

Constructions

OBJECTIVE TYPE QUESTIONS

Multiple Choice Questions (MCQs)

- 1. If we bisect a line segment of length 3.5 cm, then the measure of each of equal parts will be
- (a) 7 cm
- (b) 1.75 cm
- $1.25~\mathrm{cm}$ (c)
- (d) 5.5 cm
- Perpendicular bisector of a line segment divides it into
- (a) infinite equal parts
- (b) two equal parts
- (c) three equal parts
- (d) four equal parts
- Bisector of an angle divides the angle into
- (a) two equal parts
- (b) three equal parts
- (c) infinite equal parts
- (d) ten equal parts
- An angle can be constructed with the help of ruler and compasses only, if
- (a) It is divisible by 15
- (b) It can be written in terms of 30°, 45°, 60°, 90° or in some combination that involve these
- (c) Both (a) and (b)
- (d) None of these
- Which of the following angles can be constructed using ruler and compasses only?
- (a) 25°
- (b) 50°
- (c) 52.5° (d) 42.5°
- When we bisect an angle of 65°, the measure of each equal part is
- (a) 30.5° (b) 32.5°
- (c) 130°
- (d) 43.5°
- In figure, \overrightarrow{LM} is an arc of a circle having radius a and centre B. If LN = NM and BL
- =BM=LM=a and $\hat{L}\hat{M}=$
- $2 \tilde{M} \tilde{N}$, then $\angle CBD$ equals

 15° (a)

(b) 25°

30° (c)

- (d) 45°
- In the given figure, line *l* is the perpendicular bisector of *AB* and *m* is the perpendicular bisector of OB. If OP = 3.2 cm, then the length of AP is

- (a) 7 cm
- (b) 6.4 cm
- (c) 8.65 cm
- (d) 9.6 cm
- For which of the following conditions the construction of a triangle is not possible?
- (a) If two sides and one angle is given.
- (b) If two sides and included angle between them is given.
- (c) If three sides are given.
- (d) If two angles and side between them is given.
- 10. While constructing a triangle, sum of angles of the triangle must be
- (a) equal to 180°
- (b) less than 180°
- greater than 180° (d) equal to 360°
- 11. The construction of a $\triangle ABC$, in which AB = 6 cm, $\angle B = 60^{\circ}$, is not possible when BC + CA is
- (a) 10 cm
- (b) 9 cm
- (c) 10.5 cm
- (d) 5.9 cm
- 12. The construction of a $\triangle ABC$ in which AB = 7 cm and $\angle A = 75^{\circ}$, is possible when (BC - AC) is equal to
- (a) 6 cm
- (b) 7 cm
- (c) 8 cm
- (d) 8.5 cm
- 13. In which of the following conditions, it is possible to construct the triangle?
- (a) $\triangle ABC$, BC = 8 cm, $\angle B = 90^{\circ}$, $\angle C = 90^{\circ}$

- (b) $\triangle ABC$, BC = 6 cm, $\angle B = 60^{\circ}$, AC AB = 7 cm
- (c) ΔLMN , LN = 8 cm, $\angle L = 55^{\circ}$, LM + MN = 10 cm
- (d) ΔPQR , QR = 10 cm, $\angle R = 80^{\circ}$, PQ PR = 12 cm
- **14.** Which of the following steps is incorrect while constructing an equilateral triangle one of whose altitudes measures 6 cm?

Step I : Draw a line XY.

Step II: Mark any point *P* on it.

Step III: From *P*, draw $PQ \perp XY$.

Step IV: From P, set off PA = 6 cm, cutting PQ at A.

Step V: Construct $\angle PAB = 30^{\circ}$ and $\angle PAC = 30^{\circ}$, meeting *XY* at *B* and *C* respectively.

Then, $\triangle ABC$ is the required equilateral triangle.

- (a) Step IV
- (b) Step V
- (c) Step III
- (d) None of these
- **15.** Let ABC be a triangle in which BC = 5 cm, $\angle B = 60^{\circ}$ and AC + AB = 7.5 cm. Given below are the steps of constructing the triangle ABC. Which of the following steps is incorrect?
- **Step I:** Draw a line segment BC of length 5 cm. **Step II:** Draw an $\angle XBC = 60^{\circ}$ at point B of line

segment BC. **Step III :** Cut off PB = 3.5 cm on the ray BX.

Step IV : Join PC.

Step V: Draw perpendicular bisector of BC which intersect ray BX at A. Join AC.

Step VI : *ABC* is the required triangle.

- (a) Step II only
- (b) Step III only
- (c) Step II and V
- (d) Step III and V
- **16.** Which of the following angles cannot be constructed by using ruler and compass only?
- (a) 30°
- (b) 45°
- (c) 70°
- (d) 90°
- 17. Arrange the following steps of construction of a $\triangle ABC$, in which BC = 3.8 cm, $\angle B = 45^{\circ}$ and AB + AC = 6.8 cm in correct sequence.

Step I: Draw the perpendicular bisector of CD meeting BD at A.

Step II : Draw BC = 3.8 cm.

Step III: Join CD.

Step IV: From ray BX, cut-off line segment BD equal to AB + AC *i.e.*, 6.8 cm.

Step V: Draw $\angle CBX = 45^{\circ}$

Step VI: Join *CA* to obtain the required $\triangle ABC$.

- (a) II, IV, V, III, I, VI
- (b) II, V, III, I, IV, VI
- (c) II, V, IV, I, III, VI
- (d) II, V, IV, III, I, VI
- 18. Arrange the following steps of construction of a $\triangle ABC$ in which BC = 8 cm, $\angle B = 60^{\circ}$ and the difference between the other two sides is 3 cm in correct sequence.

Step I : Cut off BP = 3 cm.

Step II : Draw BC = 8 cm.

Step III: Construct $\angle CBX = 60^{\circ}$.

Step IV: Join AC.

Step V: Draw the right bisector of *PC*, meeting *PB* produced at *A*.

Step VI: Join PC.

Then, $\triangle ABC$ is the required triangle.

- (a) II, III, I, VI, V, IV
- (b) II, III, VI, V, IV, I
- (c) II, IV, V, VI, I, III
- (d) I, IV, V, VI, III, II
- 19. Arrange the following steps of construction of $\triangle ABC$ in which AB = 5.8 cm, BC + CA = 8.4 cm and $\angle B = 60^{\circ}$ in correct sequence.

Step I: Join AD.

Step II: From ray BX, cut off line segment BD = BC + CA = 8.4 cm.

Step III: Draw a line segment AB of length 5.8 cm.

Step IV: Draw a perpendicular bisector of AD meeting BD at point C. Join AC to obtain $\triangle ABC$.

Step V: Draw $\angle ABX = 60^{\circ}$ at point *B* of line segment *AB*.

- (a) V, III, I, II, IV
- (b) III, I, II, V, IV
- (c) III, V, II, I, IV
- (d) III, II, I, V, IV
- **20.** To construct an angle of 67.5°, we bisect angle between
- (a) 0° and 90°
- (b) 60° and 120°
- (c) 0° and 135°
- (d) 60° and 135°

SUBJECTIVE TYPE QUESTIONS

Very Short Answer Type Questions (VSA)

- 1. If we draw a perpendicular bisector of a line segment AB = 9 cm which bisects AB at M, then find AM and BM.
- **2.** Find the measure of each of the two angles formed by bisecting an angle of measure 135°.
- 3. Can a $\triangle XYZ$ be constructed, in which XY = 5 cm, $\angle X = 50^{\circ}$ and YZ + XZ = 5 cm?
- 4. Draw a straight angle. Using compass bisect it. Name the angles obtained.
- **5.** What is the length of bisected part of a line segment 7.8 cm?
- **6.** If we bisect a line segment AB, then each of the equal part we get measures 3.8 cm. Find the length of AB.
- 7. In order to construct a triangle uniquely, how many minimum parts of triangle are required to be given?

Short Answer Type Questions (SA-I)

- 8. Draw a line segment of length 6 cm. Draw perpendicular bisector of this line segment.
- 9. Can a $\triangle ABC$ be constructed in which $\angle B = 110^{\circ}$, $\angle C = 95^{\circ}$ and AB = 10 cm? Justify your answer.
- **10.** Draw a perpendicular bisector of line segment PQ of length 8.4 cm.
- 11. Draw line segment AB = 8.8 cm and draw its

- perpendicular bisector and measure the length of each part.
- **12.** Draw a line segment of length 6.4 cm. Bisect it and measure the length of each part.
- 13. Construct a square of side 3 cm.
- 14. Draw lines PQ and RS intersecting at point O. Measure a pair of vertically opposite angles. Bisect them. Are the bisecting rays forming a straight line?

Short Answer Type Questions (SA-II)

- **15.** Construct a triangle with base length 5 cm, the sum of other two sides is 7 cm and one base angle is 60°.
- **16.** Using ruler and compass only, draw a right angle.
- **17.** Using ruler and compass only, draw an angle of measure 135°.
- 18. Draw a line segment AB = 16 cm. Divide it into $\left(\frac{3}{4}\right)^{\text{th}}$ part. Measure the length of $\left(\frac{3}{4}\right)^{\text{th}}$ part of AB.
- 19. Draw a line segment AB = 13.2 cm. Divide it into 4 equal parts using ruler and compass. Also, measure the length of each part.

- **20.** By using protractor, draw an angle of 108° and taking this angle as given, construct an angle of 54°.
- **21.** Construct a $\triangle STU$, in which $\angle T = 100^{\circ}$, TU = 5 cm and ST + US = 8 cm.
- **22.** Construct an equilateral triangle, the sum of its two sides is 8 cm.
- **23.** Construct $\triangle ABC$ such that BC = 6 cm, $\angle B = 45^{\circ}$ and AB AC = 3 cm.
- **24.** Construct a right angled triangle whose base is 6 cm and sum of its hypotenuse and the other side is 10 cm.
- **25.** Construct $\triangle ABC$ such that AB = 5.8 cm, BC + CA = 7 cm and $\angle B = 60^{\circ}$.

Long Answer Type Questions (LA)

- **26.** Construct a $\triangle ABC$ in which BC = 5.6 cm, AC AB = 1.6 cm and $\angle B = 45^{\circ}$. Justify your construction.
- **27.** Using a protractor, draw an angle of measure 128°. With this angle construct an angle of measure 96°.
- 28. Construct a triangle having sides of length 6.2 cm, 7.3 cm and 6 cm. Measure all the three angles. Bisect the smallest and the largest angles. Measure any acute angle formed by the bisecting rays at the point of intersection. Also, verify your answer.
- 29. Give reason:
- (i) Construction of an angle of 22.5° is possible with the help of ruler and compass.
- (ii) It is not possible to construct a $\triangle ABC$ given that BC = 7 cm, $\angle B = 45^{\circ}$ and AB AC = 10 cm.
- (iii) We can construct an angle of 67.5° using ruler and compass.
- (iv) Construction of ΔDEF , if EF = 5.5 cm, $\angle E = 75^{\circ}$ and DE DF = 3 cm is possible.
- **30.** Construct a $\triangle PQR$, in which QR = 6.5 cm, $\angle Q = 60^{\circ}$ and PR PQ = 1.5 cm. Also, justify the construction.

ANSWERS

OBJECTIVE TYPE QUESTIONS

- 1. **(b):** If we bisect a line segment of length 3.5 cm, then measure of each part of it equals $\frac{1}{2} \times 3.5$ *i.e.*, 1.75 cm.
- **2. (b):** Perpendicular bisector of a line segment divides it into two equal parts.
- **3. (a)**: Bisector of an angle divides the angle in two equal parts.
- 4. (c)
- **5. (c)**: First we construct an angle of 105° and bisect it to get an angle of 52.5°.
- **6. (b):** When we bisect an angle, then we get two equal angles measuring half of the given angle.
- \therefore The measure of each equal angle = 65° ÷ 2 = 32.5°
- 7. **(c)**: In the given figure, BL = BM = LM = a
- :. BLM is an equilateral triangle.
- $\Rightarrow \angle ABC = 60^{\circ}$

Now,
$$\widehat{LM} = 2\widehat{MN} \Rightarrow \widehat{MN} = \frac{1}{2}\widehat{LM}$$

$$\Rightarrow$$
 $\angle CBD = \frac{1}{2} \angle ABC = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$

- 8. **(d)**: We have, PB = OP = 3.2 cm
- :. $OB = 2 \times OP = 2 \times 3.2 = 6.4 \text{ cm}$

Also, OA = OB = 6.4 cm

Now, AP = OA + OP = 6.4 + 3.2 = 9.6 cm

- **9. (a)**: A triangle can not be constructed if two sides and one angle is given.
- **10.** (a): We know by the angle sum property of a triangle that sum of all angles of a triangle is 180°.

- **11. (d)**: To construct the $\triangle ABC$, we must have BC + CA > AB.
- (a) BC + CA = 10 cm > 6 cm, so construction of triangle is possible.
- (b) BC + CA = 9 cm > 6 cm, so construction of triangle is possible.
- (c) BC + CA = 10.5 cm > 6 cm, so construction of triangle is possible.
- (d) BC + CA = 5.9 < 6 cm, so construction of triangle is not possible.
- **12. (a)**: We know that, to construct a triangle difference of two sides of a triangle must be less than the third side.
- (a) BC AC = 6 cm < 7 cm, thus triangle is possible.
- (b) BC AC = 7 cm, thus triangle is not possible.
- (c) BC AC = 8 cm > 7 cm, thus triangle is not possible.
- (d) BC AC = 8.5 cm > 7 cm, thus triangle is not possible.
- **13.** (c) : (a) In $\triangle ABC$, $\angle B + \angle C = 90^{\circ} + 90^{\circ} = 180^{\circ}$ But we know,

 $\angle A + \angle B + \angle C = 180^{\circ} \Rightarrow \angle A = 0^{\circ}$, which is not possible Thus, triangle is not possible.

(b) In $\triangle ABC$, AC - AB = 7 cm > 6 cm

Thus, $\triangle ABC$ is not possible. (: Difference of two sides of a triangle is less than the third side)

(c) In ΔLMN , LM + MN = 10 cm > 8 cm

Thus, ΔLMN is possible. (:: Sum of two sides of a triangle is greater than the third side)

(d) In $\triangle PQR$, PQ - PR = 12 cm > 10 cm

Thus, $\triangle PQR$ is not possible. (: Difference of two sides of a triangle is less than the third side)

14. (d): All steps are correct.

15. (d): Step III and V are incorrect.

The correct steps are:

Step III: Cut off PB = 7.5 cm on the ray BX.

Step V: Draw perpendicular bisector of *PC* which intersect ray BX at A. Join AC.

16. (c) : Angle 70° cannot be constructed by using ruler and compass only.

17. (d): The correct sequence is II, V, IV, III, I, VI.

18. (a): The correct sequence is II, III, I, VI, V, IV.

19. (c): The correct sequence of steps of construction is III, V, II, I, IV.

20. (c) : Since, $135^{\circ} \div 2 = 67.5^{\circ}$

There, we will bisect the angle between 0° and 135° to construct an angle of 67.5°.

SUBJECTIVE TYPE QUESTIONS

Since, perpendicular bisector of a line segment divides it into two equal parts.

$$\therefore AM = BM = \frac{9}{2} \text{cm} = 4.5 \text{ cm}$$

The measure of each of the two angles formed by

bisecting an angle of measure $135^{\circ} = \frac{1}{2} \times 135^{\circ} = 67.5^{\circ}$.

3. No, ΔXYZ can't be constructed.

Since, sum of two sides of triangle must be greater than third side, but here, XY = YZ + XZ.

4.

Steps of construction:

Step I: Draw any straight angle (say $\angle AOC$)

Step II: Draw \overrightarrow{OB} , the bisector of $\angle AOC$.

Then, $\angle AOB$ and $\angle BOC$ are the required angles obtained by bisecting straight $\angle AOC$.

- We know that bisector of the line, divides it into two equal parts.
- Length of bisected part of a line segment measuring

7.8 cm =
$$\frac{1}{2}$$
 (7.8) cm = 3.9 cm.

- **6.** If we bisect line segment *AB*, then we get each part equal to 3.8 cm.
- \therefore Length of $AB = 2 \times 3.8 \text{ cm} = 7.6 \text{ cm}$
- To construct a triangle uniquely, we are required at least three values like, 2 sides and 1 included angle or 2 angles and 1 included side or all three sides.

Steps of construction:

Step I : Draw a line segment AB = 6 cm by using a ruler.

Step II: With *A* as centre and radius more than half of AB, draw arcs on both sides of AB.

Step III: With *B* as centre and the same radius (as taken in previous step), draw arcs cutting the previous arcs drawn in Step II at E and *F* respectively.

Step IV: Join *EF* intersecting *AB* at M.

Thus, EF is perpendicular bisector of the line segment

9. No, as we know that sum of all three angles of a triangle is 180°.

But, here $\angle B + \angle C = 110^{\circ} + 95^{\circ} = 205^{\circ} > 180^{\circ}$

 $\triangle ABC$ cannot be constructed with given conditions.

10. Steps of construction:

Step I : Draw a line segment PQ = 8.4 cm.

Step II: With *P* as centre and radius more than half of PQ, draw two arcs, one on each side of PQ.

Step III: With *Q* as centre and the same radius as in Step II, draw arcs cutting the arcs drawn in the previous step at *L* and *M* respectively.

Step IV: Join *LM*.

Thus, the line segment *LM* is required perpendicular bisector of PQ.

11. Steps of construction:

Step I : Draw a line segment AB = 8.8 cm by using graduated ruler.

Step II : Taking *A* as centre and radius equal to more than half of AB, draw arcs on both sides of line segment AB.

Step III: Taking *B* as centre and same radius as in Step II, draw arcs on both sides of AB cutting the previous arcs at *E* and *F*.

Step IV: Join *EF* intersecting *AB* at *M*.

Then, EF is the required perpendicular bisector of AB. On measuring by graduated ruler, we find that AM = MB = 4.4 cm.

12. Steps of construction:

Step I : Draw a line segment AB = 6.4 cm by using a graduated ruler.

Step II: Taking A as centre and radius equal to more than half of AB, draw arcs on both sides of line segment

Step III: Taking *B* as centre and same radius as in Step II, draw arcs on both sides of the line segment AB, cutting the previous arcs at *E* and *F*.

×F

Step IV: Join EF, intersecting AB at M.

Then, *M* bisects the line segment *AB*.

On measuring with graduated ruler, we find that AM = MB = 3.2 cm

13. Steps of construction:

Step I: Draw a line segment AB = 3 cm.

Step II: Draw angle of 90° at points A and B of the line segment AB. Also draw AX parallel to \overrightarrow{BY} .

Step III: Cut AD and BC of length 3 cm on \overline{AX} and \overline{BY} , respectively.

Step IV: Join CD.

Then, *ABCD* is the required square of side 3 cm.

14. Steps of construction:

Step I: Draw a line *PQ*.

Step II: Draw another line RS intersecting PQ at point O.

Step III: Measure pair of vertically opposite angles.

Step IV: Construct OX bisector of $\angle QOS$ and OY bisector of $\angle POR$.

Yes, from the construction it is clear that the bisecting rays are forming a straight line.

15. Steps of construction:

Step I : Draw PQ = 5 cm.

Step II: At *P*, construct $\angle P = 60^{\circ}$.

Step III: From P, cut line segment PT =7 cm (=PR + RQ)

Step IV: Join TQ.

Step V : Draw the perpendicular bisector of TQ which meets PT at R.

Step VI: Join RQ.

Thus, ΔPQR is the required triangle.

16. Steps of construction:

Step I : Draw a ray \overrightarrow{OA} .

Step II: Taking O as centre and suitable radius, draw a semicircle, which cuts *OA* at *B*.

Step III: With B as centre and the same radius, as in Step II, draw

an arc cutting the semicircle at C. Again, with C as centre, draw an arc cutting the semicircle at *D*.

Step IV: Draw \overrightarrow{OC} and \overrightarrow{OD} .

Step V: Draw \overrightarrow{OF} , the bisector of $\angle COD$.

Thus, $\angle AOF = 90^{\circ}$

17. Steps of construction:

Step I : Draw a ray *OP*.

Step II: With centre *O* and a suitable radius, draw an arc which cuts *OP* at *A*.

Step III: With the same radius and starting from *A*, mark points Q, R and S on the arc drawn in Step II such that $\widehat{AO} = \widehat{OR} = \widehat{RS}$

Step IV: Draw \overrightarrow{OL} , the bisector of $\angle ROS$.

Step V: Draw \overrightarrow{OM} , the bisector of $\angle ROL$.

Thus, $\angle POM = \angle POR + \angle ROM = 120^{\circ} + 15^{\circ} = 135^{\circ}$

18. Since,
$$\frac{3}{4} = \frac{2+1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{1}{2} + \frac{1}{4}$$

of AB, we should bisect AB and then

again bisect one of the bisected part of AB.

Steps of construction:

Step I : Draw a line segment AB = 16 cm.

Step II: Draw the perpendicular bisector *PQ* of *AB* such that *PQ* intersects *AB* at point *M*.

Step III: Now, draw the perpendicular bisector *CD* of MB.

Thus, AM + MN i.e., AN is the required

line segment.

ine segment.

$$\therefore AN = \frac{3}{4}AB = \frac{3}{4} \times 16$$

$$= 3 \times 4 = 12 \text{ cm}$$

$$Q \times PD$$

Hence, the measure of *AN* is 12 cm.

19. Steps of construction:

Step I : Draw a line segment *AB* = 13.2 cm.

Step II: Draw a perpendicular bisector of *AB*, which intersect *AB* at *M*.

Step III: Again, draw a perpendicular bisector of *AM*; which intersects *AM* at *P*.

Step IV: Also, draw a perpendicular bisector of *BM*, which intersects *BM* at *Q*.

Thus, AB is divided into four equal parts, where AP = PM = MQ = QB

$$= \frac{1}{4}AB = \frac{13.2}{4} = 3.3 \text{ cm}$$

20. Steps of construction:

Step I : Draw a ray \overrightarrow{OA} .

Step II: By using protractor, draw $\angle AOB$ = 108° = $2 \times 54^{\circ}$.

Step III: With *O* as centre and any convenient radius, draw an arc cutting *OA* and *OB* at *P* and *Q* respectively.

Step IV: With *P* as centre and radius more than half of *PQ*, draw an arc.

Step V: With *Q* as centre and the same radius as taken in Step IV, draw another arc intersecting the previous arc at *C*. Join *OC*.

Thus, \overrightarrow{OC} is the bisector of $\angle AOB$, such that

$$\angle AOC = \frac{1}{2} \angle AOB = \frac{108^{\circ}}{2} = 54^{\circ}$$

21. Steps of construction:

Step I : Draw TU = 5 cm.

Step II: Draw $\angle UTX = 100^{\circ}$

Step III : Along \overrightarrow{TX} , cut off a line segment TR = ST + US = 8 cm.

Step IV: Join UR.

Step V: Draw the perpendicular bisector of *UR*, meeting *TR* at *S*.

Step VI: Join US.

Hence, ΔSTU is the required triangle.

22. We know that, in equilateral triangle, all the angles are of equal measure and all sides are of equal length. Since, sum of two-sides of triangle is 8 cm, therefore each side of equilateral triangle will be 4 cm.

Steps of construction:

Step I : Draw the line segment BC = 4 cm.

Step II : Taking *B* as centre and radius = 4 cm draw an arc.

Step III: Taking *C* as centre and same radius as in Step II, draw an arc cutting the previous arc at *A*.

Step IV: Join *AB* and *AC*.

Then, *ABC* is the required equilateral triangle.

23. Steps of Construction:

Step I : Draw BC = 6 cm and $\angle CBX = 45^{\circ}$.

Step II : On \overrightarrow{BX} , cut BD = 3 cm.

Step III: Join CD.

Step IV: Draw *PQ*, perpendicular bisector of *CD*.

Step V: PQ intersects \overrightarrow{BX} at A and CD at L.

Step VI: Join AC.

Hence, $\triangle ABC$ is the required triangle.

24. Steps of construction:

Step I: Draw a base *BC* equal to 6 cm.

Step II: Construct $\angle CBX = 90^{\circ}$.

Step III: Cut line segment BD = 10 cm along \overrightarrow{BX} .

Step IV: Join CD and

draw PQ, perpendicular bisector of CD.

Step V: *PQ* intersects *BD* at *A* and *CD* at *L*.

Step VI: Join AC.

Hence, $\triangle ABC$ is the required right triangle.

25. Steps of Construction:

Step I: Draw a line segment AB = 5.8 cm and $\angle ABX = 60^{\circ}$

Step II: Cut line segment BD = 7 cm along \overrightarrow{BX} .

Step III: Join *AD* and draw *PQ*, perpendicular bisector of *AD*.

Step IV: Let *PQ* intersects *BD* at *C*.

Step V: Join *AC*.

Hence, $\triangle ABC$ is the required triangle.

26. Steps of construction:

Step I : Draw BC = 5.6 cm.

Step II: At *B*, construct $\angle CBX = 45^{\circ}$.

Step III: Produce XB to X' to form line $\overline{XBX'}$.

Step IV: Along ray BX', cut-off a line segment BD = 1.6 cm.

Step V: Join *CD*.

Step VI: Draw perpendicular bisector of *CD* which cuts \overline{BX} at *A*.

Step VII: Join *CA* to obtain required triangle *BAC*.

Justification:

Since *A* lies on the perpendicular bisector of *CD*.

- \therefore $AC = AD = AB + DB = AB + 1.6 \Rightarrow AC AB = 1.6 cm$ which justified the construction.
- 27. 3In order to construct an angle of measure 96° from an angle of measure 128°, we use the following steps:

Steps of construction:

Step I : Draw an angle $\angle AOB$ of measure 128° by using a protractor.

Step II: With centre *O* and a convenient radius, draw an arc cutting *OA* and *OB* at *P* and *Q* respectively.

Step III: With centre *P* and radius more than $\frac{1}{2}(PQ)$,

Step IV: With centre *Q* and the same radius, as in Step III, draw another arc intersecting the previously drawn arc at R.

Step V: Join *OR* and produce it to form ray \overrightarrow{OX} . \overrightarrow{OX} cuts arc \widehat{PQ} at S. Then $\angle AOX$ so obtained is equal to $\left(\frac{128^{\circ}}{2}\right) = 64^{\circ}.$

Step VI: With *S* as a centre and radius more than half of *QS*, draw an arc.

Step VII: With centre *Q* and the same radius, as in Step VI, draw another arc intersecting the arc drawn in Step VI at T.

Step VIII: Join *OT* and produce it to form a ray \overrightarrow{OY} .

Clearly,
$$\angle XOY = \frac{1}{2} \angle XOB = \frac{1}{2} (64^{\circ}) = 32^{\circ}$$

 \therefore $\angle AOY = \angle AOX + \angle XOY = 64^{\circ} + 32^{\circ} = 96^{\circ}$ Thus, $\angle AOY$ is the desired angle of measure 96°.

28. Steps of construction:

Step I : Draw a line segment AB = 6.2 cm.

Step II: Draw an arc with *A* as centre and 7.3 cm as radius and draw another arc with B as centre and 6 cm as radius to intersect each other at C.

Step III: Join AC and BC. Thus, we get the required triangle ABC. On measuring all the three angles, we get $\angle A = 52^{\circ}$, $\angle B = 73^{\circ}$ and $\angle C = 55^{\circ}$.

Step IV : Since, $\angle A$ is the smallest angle and $\angle B$ is

the largest angle in $\triangle ABC$. Draw the angle bisectors of $\angle A$ and $\angle B$, which intersect each other at O.

Step V: On measuring the acute $\angle AOY$ formed by the bisecting rays AX and BY at the point of intersection O, we get $\angle AOY = 62.5^{\circ}$.

Verification: In $\triangle AOB$.

 $\angle AOY = \angle OAB + \angle OBA$ (Exterior angle property)

$$\Rightarrow \angle AOY = \frac{1}{2} \angle A + \frac{1}{2} \angle B \quad (\because AO \text{ and } BO \text{ are the})$$

bisectors of $\angle A$ and $\angle B$ respectively)

$$\Rightarrow \angle AOY = \frac{52^{\circ}}{2} + \frac{73^{\circ}}{2} = 26 + 36.5^{\circ} = 62.5^{\circ}$$

- **29.** (i) Yes, because $22.5^{\circ} = 45^{\circ} \div 2$ and 45° can be constructed.
- (ii) Yes, it is not possible to construct a $\triangle ABC$ in which BC = 7 cm and AB - AC = 10 cm with $\angle B = 45^{\circ}$ because the difference between the given two sides is not less than the third side.
- (iii) Yes, we can construct an angle of 67.5°, because $67.5^{\circ} = 135^{\circ} \div 2$ and $135^{\circ} = 90^{\circ} + 45^{\circ}$, which can be constructed.
- (iv) Yes, it is possible to construct a ΔDEF in which EF = 5.5 cm, $\angle E = 75^{\circ}$ and DE - DF = 3 cm because the difference between the given two sides is less than the third side.
- **30.** Here, PR PQ = 1.5 cm : PR > PQ

i.e., The side containing the base angle Q is less than third side, so it is the case II.

Steps of construction:

Step I : Draw the base QR = 6.5 cm.

Step II: Construct a ray QX making an angle 60° with QR and extent XQ on opposite side of line segment QR, to form a line XQX'.

Step III: From \overrightarrow{QX}' , cut-off the line segment QS = 1.5 cm (= PR - PQ).

Step IV: Join *SR*.

Step V: Draw the perpendicular bisector of SRintersecting \overline{QX} at point P.

Step VI: Join PR.

Then, *PQR* is the required triangle.

Justification: Since, point *P* lies on the

perpendicular bisector of SR.

 $:: PS = PR \Rightarrow PQ + QS = PR \Rightarrow PR - PQ = QS = 1.5 \text{ cm},$ which justified the construction.