

CONSTRUCTIONS

(A) OBJECTIVE TYPE QUESTIONS

1 Mark Each

Stand Alone MCQs

(1 Mark Each)

- 1. To divide a line segment AB in the ratio 5:7, first a ray AX is drawn so that ∠BAX is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is:
 - (A) 8
- **(B)** 10
- (C) 11
- (D) 12
- C + U

Ans. Option (D) is correct.

Explanation: Minimum number of the points marked = sum of ratios = 5 + 7 = 12.

- 2. To divide a line segment AB in ratio 4:7, a ray AX is drawn first such that $\angle BAX$ is an acute angle and then points A_1 , A_2 , A_3 , ... are located at equal distances on the ray AX and the point B is joined to:
 - (A) A_{12}
- **(B)** A_{11}
- (C) A₁₀
- **(D)** A₉
- C + U

Ans. Option (B) is correct.

Explanation: We have to divide the line segment into 7 + 4 = 11 equal parts and 11^{th} part will be joined to B, here A_{12} will never appear.

- 3. To divide a line segment AB in the ratio 5: 6 draw a ray AX such that \angle BAX is an acute angle, then draw a ray BY parallel to AX, and the points, A₁, A₂, A₃, ... and B₁, B₂, B₃, ... are located at equal distances on ray AX and BY, respectively. Then the points joined are:
 - (A) A_5 and B_6
- **(B)** A_6 and B_5
- (C) A_4 and B_5
- **(D)** A_5 and B_4

C 59+ U

Ans. Option (A) is correct.

Explanation: In the figure, segment *AB* of given length is divided into 2 parts of ratio 5 : 6 in following steps:

- (i) Draw a line-segment AB of given length.
- (ii) Draw an acute angle BAX as shown in figure.

- (iii) Draw angle $\angle ABY = \angle BAX$ on other side of AB.
- (iv) Divide AX into 5 equal parts by using compass.
- (v) Divide BX into at in 6 equal parts at as AX was divided.
- (vi) Now, join A_5 and B_6 which meet AB at P. P divides AB in ratio AP : PB = 5 : 6.
- 4. To draw a pair of tangents to a circle which are inclined to each other at an angle of 60°, it is required to draw tangents at end points of those two radii of the circle, the angle between them should be:
 - (A) 135°
- **(B)** 90°
- (C) 60°
- (D) 120°

Ans. Option (D) is correct.

Explanation:

We know that tangent and radius at contact point are perpendicular to each other. So, $\angle P$ and $\angle Q$ in quadrilateral TPOQ formed by tangents and radii will be of 90° each.

So, the sum of

$$\angle T + \angle O = 180^{\circ}$$
as
$$\angle T = 60^{\circ}$$
 [Given]
$$\therefore \angle O = 180^{\circ} - 60^{\circ}$$

$$= 120^{\circ}$$

Case-based MCQs

(1 Mark Each)

Attempt any four sub-parts from each question. Each sub-part carries 1 mark.

I. Read the following text and answer the questions given below it:

A school conducted Annual Sports Day on a triangular playground. On the ground, parallel lines have been drawn with chalk powder at a distance of 1 m. 7 flower pots have been placed at a distance of 1 m from each other along DM as shown in the figure.

Kinetics, near by indian gas agency, Khurja road, Jewar(20313B)H: 8868813600, 8868823600

1. PD₃ is parallel to:

- (A) PD
- **(B)** PE
- (C) ED₇
- (D) None of these.

Ans. Option (C) is correct.

Explanation: In
$$\Delta ED_7D$$
, $PD_3 \mid\mid ED_7$.

- 2. If $\angle PD_3D = 82^\circ$, then the measure of $\angle ED_7D$ is:
 - (A) 98°
- **(B)** 82°
- (C) 90°
- (D) 45°

Ans. Option (B) is correct.

Explanation: We have,

 $PD_3 \mid\mid ED_7$

Then, $\angle ED_7D = \angle PD_3D$ [Corresponding angles] ∴ $\angle ED_7D = 82^\circ$.

3. The ratio in which P divides DE, is:

- (A) 3:4
- **(B)** 7:3
- (C) 3:7
- (D) 2:5

Ans. Option (A) is correct.

Explanation: P divides DE in the ratio 3:4.

- 4. The ratio of DE to DP will be:
 - (A) 2:5
- **(B)** 3:4
- (C) 3:7
- **(D)** 7:3

Ans. Option (D) is correct.

Explanation: Since

DP:PE=3:4

DE:DP=7:3

- 5. The total distance used for putting 7 flower pots is:
 - (A) 6 m
- **(B)** 7 m
- (C) 5 m
- (D) 8 m.

Ans. Option (B) is correct.

Explanation: Since, 7 flower pots have been placed at a distance of 1 m from each other, then total distance = 7 m.

(B) SUBJECTIVE QUESTIONS

Very Short Answer Type Questions

(1 Mark Each)

1. In the figure, if B₁, B₂, B₃,..... and A₁, A₂, A₃,.... points have been marked at equal distances. On lines X and Y in what ratio does C divides AB?

U [CBSE SQP, 2020-21]

- **Sol.** C divides AB internally in the ratio 8 : 5.
 - 2. To find a point P on the line segment AB = 6 cm, such that $\frac{AP}{AB} = \frac{2}{5}$, in which ratio the line segment AB is divided.
- **Sol.** The line segment AB is divided in the ratio

$$AP : PB = 2 : (5-2) = 2 : 3$$

P

6 cm

3. A line segment AB is divided at point P such that $\frac{PB}{AB} = \frac{3}{7}$, then find the radio AP : PB.

Sol. Here,
$$AB = 7$$
, $PB = 3$

$$\therefore AP = AB - PB = 7 - 3 = 4$$

$$AP : PB = 4:3$$

Short Answer Type Questions-I (2 Marks Each)

- 1. Draw a line segment AB of length 9 cm. With A and B as centres, draw circles of radius 5 cm and 3 cm respectively. Construct tangents to each circle from the centre of the other circle.
- Sol. Steps of Construction:

- **1.** Draw a line segment AB of 9 cm.
- **2.** Taking A and B as centres draw two circles of radii 5 cm and 3 cm respectively.

- 3. Bisect the line AB. Let mid-point of AB be C.
- **4.** Taking C as centre draw a circle of radius AC which intersects the two circles at point P, Q, R and S.
- **5.** Join BP, BQ, AS and AR. BP, BQ and AR, AS are the required tangents.
- 2. Draw a line segment of length 8 cm and divide it internally in the ratio 4:5. U [CBSE Delhi, 2017]

Sol. Steps of Construction:

- **1.** Draw a line segment AB = 8 cm and draw a ray AX making an acute angle with AB at A.
- **2.** Locate (4 + 5) = 9 points A_1 , A_2 , A_3 , A_9 on AX such that $AA_1 = A_1A_2 = A_2A_3$ A_9 .
- 3. Join BA₉
- **4.** Through the point A₄ draw a line parallel to BA₉ intersecting AB at C.
- **5.** Therefore, C is the point which divides the AB in the ratio 4:5.

3. Draw a line segment of length 7 cm. Find a point P on it which divides it in the ratio 3:5.

U [CBSE Term-II, 2015]

Sol. Steps of construction:

1. Draw a line segment AB = 7 cm.

- **2.** Draw any ray AX making an acute angle down ward with AB.
- **3.** Mark the points A_1 , A_2 , A_3 ,...., A_8 on AX such that $AA_1 = A_1A_2 = A_2A_3 = ..., A_7A_8$.
- 4. Join BA₈.
- **5.** Through the point A₃, draw a line parallel to BA₈. To meet AB on P.

Hence
$$AP : PB = 3 : 5$$
 1

[CBSE Marking Scheme, 2015]

4. Draw a line segment of length 5 cm and divide it in the ratio 3:7. U [CBSE Term-II, 2015]

Sol. Steps of Construction:

- **1.** Draw a line segment AB = 5 cm.
- 2. Draw any ray AX making an acute angle downward with AB.
- **3.** Mark the points A_1 , A_2 , A_3 , A_{10} on AX such that $AA_1 = A_1A_2 = = A_9A_{10}$.
- **4.** Join BA_{10} .
- **5.** Through the point A_3 draw a line parallel to BA_{10} . To meet AB at P.

Hence
$$AP : PB = 3 : 7$$
.

[CBSE Marking Scheme, 2015]

5. Draw a line segment AB of length 7 cm. Taking A as centre, draw a circle of radius 3 cm and taking B as centre, draw another circle of radius 2 cm. Construct tangents to each circle from the centre of the other circle. A [CBSE Delhi Term-II, 2015]

Sol. Steps of Construction:

- 1. Draw a line segment AB of 7 cm.
- **2.** Taking A and B as centres draw two circles of radii 3 cm and 2 cm respectively.
- 3. Bisect the line AB. Let mid-point of AB be C.

- **4.** Taking C as centre draw a circle of radius AC which intersects the two circles at point P, Q, R and S.
- 5. Join BP, BQ, AS and AR.
 - BP, BQ and AR, AS are the required tangents. 2
 [CBSE Marking Scheme, 2015]
- 6. Draw a circle of radius 1.5 cm. Take a point P outside it. Without using the centre draw two tangents to the circle from the point P.

Α ([O.E.B.]

Sol. Steps of construction:

- 1. Draw a circle of radius 1.5 cm. Take a point P outside it
- **2.** Through P draw a secant PAB to meet the circle at A and B.
- **3.** Produce AP to C such that PC = PA. Bisect CB at Q.
- With CB as diameter and centre as Q, draw a semicircle.
- **5.** Draw PD \perp CB, to meet semi-circle at the point D.
- **6.** Taking P as centre and PD as radius draw an arc to intersect the circle at T and T'.
- 7. Join P to T and T'

Hence, PT and PT' are the required tangents.

7. Two line-segments AB and AC include an angle of 60° , where AB = 5 cm and AC = 7 cm. Locate points P and Q on AB and AC respectively such that $AP = \frac{3}{4}$ AB and $AQ = \frac{1}{4}$ AC. Join P and Q and

Sol. Steps of construction:

- **1.** Draw $\angle BAC = 60^{\circ}$ such that AB = 5 cm and AC = 7 cm.
- **2.** Draw acute angle CAX and mark X_1 , X_2 , X_3 , and X_4 equally spaced.
- 3. Join X_4C .
- **4.** Draw $X_1Q \mid \mid X_4C$.

- **5.** Similarly, draw \angle BAY and divide AY in 4 equal parts, *i.e.*, Y_1 , Y_2 , Y_3 and Y_4 .
- **6.** Join Y_4B and draw $Y_3P \mid \mid Y_4B$.
- 7. Join PQ and measure it.
- 8. PQ is equal to 3.3 cm.

Short Answer Type Questions-II (3 Marks Each)

1. Draw a circle of radius of 3 cm. Take two points P and Q one of its diameter extended on both sides, each at a distance of 7 cm on opposite sides of its centre. Draw tangents to the circle from these two points.

A [CBSE Foreign Set-III, 2017]

Sol. Steps of Construction:

- 1. Draw a circle with centre O and radius 3 cm.
- **2.** Draw its diameter MON and extend it to both the sides to P and Q. Such that OP = OQ = 7 cm.
- **3.** Taking diameters as *OP* and *OQ* draw two circles each of which intersects the first circle at the points *A*, *B* and *C*, *D* respectively.
- **4.** Join *PA*, *PB*, *QC* and QO to get the required tangents.

2. Construct a pair of tangents PQ and PR to a circle of radius 4 cm from a point P outside the circle 8 cm away from the centre. Measure PQ and PR.

[A] [CBSE Term-II, 2015]

Sol. Steps of construction:

- **1.** Draw a line segment OP = 8 cm
- 2. Taking O as centre and radius 4 cm, draw a circle.
- **3.** Taking OP as diameter draw another circle which intersects the first circle at Q and R.
- 4. Join P to Q and P to R.

On measuring, we get

PQ = PR = 6.92 cm (Approx.)

3. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm.

A [CBSE Term-II, 2013]

Sol. Steps of construction:

- **1.** Draw a circle of radius 4 cm with centre O.
- 2. Draw another circle of radius 6 cm with same centre O.
- **3.** Take a point P on second circle and join OP.
- **4.** Draw perpendicular bisector of OP which intersect OP at O'.
- **5.** Draw a circle with centre O' which intersects the inner circle at points A and B.
- 6. Join PA and PB, which are the required tangents.

4. Draw a line segment of length 6 cm and divide it internally in the ratio 4:3. Prove your assertion.

Sol. Steps of Construction:

- **1.** Draw a line segment AB = 6 cm.
- **2.** Draw a ray AX, making an acute \angle BAX.
- 3. Along AX, mark (4 + 3) = 7 points A_1 , A_2 , A_3 , ..., A_7 such that $AA_1 = A_1A_2 = ... = A_6A_7$.
- **4.** Join BA_7 .
- **5.** Through the point A_4 draw a line parallel to BA_7 , to meet AB at C. Hence, AC:CB=4:3.

Proof: Suppose $AA_1 = A_1A_2 = = A_6A_7 = x$

In $\triangle BAA_7$, we have $CA_4 \mid\mid BA_7$

$$\therefore \frac{AC}{CB} = \frac{AA_4}{A_4A_7} = \frac{4x}{3x} = \frac{4}{3}$$

[By using Thale's theorem]

Hence, AC: CB = 4:3.

5. Draw a line segment of length 13.5 cm and divide it internally in the ratio 2:3:4. Measure each part and verify it. ☐ + AE 〈 ☐ (O.E.B.)

Sol.

Steps of Construction:

- **1.** Draw a line segment AB = 13.5 cm.
- **2.** Draw a ray AX, making an acute \angle BAX.
- 3. Along AX, mark (2 + 3 + 4) = 9 points A_1 , A_2 , A_3 ,, A_9 such that $AA_1 = A_1A_2 = A_2A_3 = = A_8A_9$.
- 4. Join BA₉.
- **5.** Through the points A_2 and A_5 , draw $BA_9 \parallel CA_2$ and $BA_9 \parallel DA_5$. To meet AB at C and D respectively.
- **6.** On measuring the three parts, we get AC = 3 cm, CD = 4.5 cm and DB = 6 cm.

Verification: AC = 2x, CD = 3x and DB = 4x

$$\therefore \qquad 2x + 3x + 4x = 13.5$$

$$\Rightarrow \qquad 9x = 13.5$$

$$\Rightarrow$$
 $x = 1.5$

Sum of ratio =
$$2 + 3 + 4 = 9$$

$$AC = \frac{2x}{9x} \times 13.5 = 3 \text{ cm}$$

$$CD = \frac{3x}{9x} \times 13.5 = 4.5 \text{ cm}$$

and

$$DB = \frac{4x}{9x} \times 13.5 = 6 \text{ cm}$$

Hence,
$$AC + CD + DB = (3 + 4.5 + 6)$$
 cm = 13.5 cm.

6. Draw a line segment of length 7.6 cm and divide it in the ratio 5 : 8 and verify it.
A ⟨ ♀ ⟩ [O.E.B.]

Sol.

Steps of Construction:

- (i) Draw a line segment AB = 7.6 cm.
- (ii) Draw a ray AX, making an acute ∠BAX.
- (iii) Along AX, make (5 + 8) = 13 points A_1 , A_2 , A_3 ,, A_{13} such that $AA_1 = A_1A_2 = A_2A_3 = = A_{12}A_{13}$.
- (iv) Join BA₁₃.
- (v) Through the point A_5 draw a line parallel to BA_{13} , to meet AB at C.

Hence, AC : CB = 5 : 8.

(vi) On measuring the two parts, we get AC = 4.7 cm and BC = 2.9 cm.

Verification:

In ΔACX_5 and ΔABX_{13} , we have,

$$BA_{13} \parallel CA_5.$$

$$\frac{AC}{CB} = \frac{AA_5}{A_5A_{13}} = \frac{5}{8}$$

$$AC: CB = 5: 8$$

Long Answer Type Questions

(5 Marks Each)

Draw a line segment AB of length 7 cm. Taking A as centre, draw a circle of radius 3 cm and taking B as centre, draw another circle of radius 2 cm. Construct tangents to each circle from the centre of the other circle.

A [CBSE Delhi Set-I, 2020]

Sol. Steps of construction:

- **1.** Draw a line segment AB = 7 cm.
- 2. With A as centre and radius 3 cm draw a circle.
- 3. With B as centre and radius 2 cm draw another circle.
- **4.** Taking AB as diameter draw another circle, which intersects first two circles at P and Q, R and S.
- **5.** Join B to P and Q, and A to R and S. Hence, BP, BQ, AR and AS are the required tangents.

2. Draw a circle of radius 2 cm with centre O and take a point P outside the circle such that OP = 6.5 cm. From P, draw two tangents to the circle.

A [CBSE OD Set-I, 2016, 2020]

[CBSE Foreign set-I, II, III 2015]

Sol.

Steps of construction:

- **1.** Draw a line segment OP = 6.5 cm.
- 2. Taking O as centre and radius 2 cm, draw a circle.
- **3.** Taking OP as diameter draw another circle which intersects the first circle at Q and R.
- **4.** Join P to Q and R. Hence, PQ and PR are two tangents.
- 3. Draw two tangents to a circle of radius 4 cm, which are inclined to each other at an angle of 60°.

A [CBSE OD Set-II, 2020]

Sol. Steps of construction:

- 1. Draw a circle of radius 4 cm with O as centre.
- **2.** Draw two radii OA and OB inclined to each other at an angle of 120°.
- 3. Draw AP \perp OA at A and BP \perp OB at B, which meet at P.
- **4.** PA and PB are the required tangents inclined to each other an angle of 60°.

COMMONLY MADE ERROR

 Some candidates follow incorrect methods for construction.

ANSWERING TIP

- Read the construction based questions carefully and solve them as per requirement.
- 4. Draw a circle of radius 3.5 cm. From a point P, 6 cm from its centre, draw two tangents to the circle.

A [CBSE OD Set-III, 2020]

Sol. Steps of construction:

- **1.** Draw a line segment OP = 6 cm.
- **2.** From the point O, draw a circle of radius = 3.5 cm.
- **3.** Draw the perpendicular bisector of OP. Let M be the mid point of OP.
- **4.** Taking M as centre and OM as radius draw a circle.
- **5.** This circle intersects the given circle at Q and R.
- **6.** Join PQ and PR, which are the required tangents to the circle.

5. Construct a pair of tangents to a circle of radius 3 cm which are inclined to each other at an angle of 60°.

A [CBSE SQP, 2020]

Sol. Correct construction of given circle 2
Correct construction of two tangents 3
[CBSE SQP Marking Scheme, 2020]

Detailed Solution:

Try yourself similar to Q. No. 3. L.A.T.Q.

6. Drawn two concentric circles of radii 2 cm and 5 cm. Take a point P on the outer circle construct a pair of tangents PA and PB to the smaller circle.

Measure PA.

A [CBSE OD Set-I, 2019]

Sol. Constructing two concentric circle of radii 2 cm and 5 cm $1\frac{1}{2}$ Drawing two tangents PA and PB 2 PA = 4.5 cm (approx.) $1\frac{1}{2}$ [CBSE Marking Scheme, 2019]

Detailed Solution:

Steps of construction:

- 1. Draw a circle with radius 2 cm and centre O.
- 2. Draw another circle with radius 5 cm same centre Ω
- **3.** Take a point P on the circumference of larger circle and join O to P.
- **4.** Taking OP as diameter draw another circle which intersects the smaller circle at A and B.
- 5. Join A and B to P.Hence PA and PB are the required tangents.On measuring PA = 4.6 cm (Approx.)
- 7. Construct a pair of tangents to a circle of radius 4 cm from an external point at a distance 6 cm from the centre of the circle.

 A [CBSE Delhi Region, 2019]

P on it which divides it in the ratio 3:5. Write the measurement of each part and give Justification.

C ⟨ ((O.E.B.)

Sol. Steps of Construction:

- **1.** Draw a line segment AB = 8 cm.
- **2.** Draw AX \parallel BY such that $\angle A$ and $\angle B$ are acute.
- 3. Divide AX and BY in 3 and 5 parts equally by compass and mark A₁, A₂, A₃, B₁, B₂, B₃, B₄ and B₅ respectively.
- **4.** Join A_3B_5 which intersect AB at P and divides it, AP : PB = 3 : 5.

Measurement of each part:

AP = 3 cm and PB = 5 cm.

Justification: In $\triangle AA_3P$ and $\triangle BB_5P$,

$$AX \mid\mid BY$$
 [By construction]
 $\angle A = \angle B$ [Alternate angles]
 $\angle A_3PA = \angle B_5PB$

[Vertically opposite angles]

 $\therefore \qquad \Delta A A_3 P \sim \Delta B B_5 P$

[By AA criterion of similarity]

$$\Rightarrow \frac{AA_3}{BB_5} = \frac{AP}{BP}$$

 \Rightarrow AP:BP=3x:5x

[Let each equal part be x cm]

or AP : BP = 3 : 5

9. Draw a line segment 12.6 cm long with ruler and compass divide it into three line segments in the ratio 2:3:5. Measure each of the three parts.

⟨♀ [O.E.B.]

5

Sol. Steps of Construction:

- **1.** Draw a line segment AB = 12.6 cm.
- 2. At A, draw an acute angle BAX.
- 3. On AX mark 10 (2 + 3 + 5) points A_1 , A_2 , A_3 ,, A_{10} such that $AA_1 = A_1A_2 = A_2A_3 = = A_9A_{10}$.
- **4.** Join A₁₀B.
- **5.** Through A_2 and A_5 draw two line parallel to $A_{10}B$ intersecting AB at points P and Q respectively, which divide AB in the ratio 2:3:5. *i.e.*,

AP : PQ : QB = 2 : 3 : 5.

Measurement of each part:

AP = 2.6 cm, PQ = 3.5 cm and QB = 6.5 cm.

10. Draw a line segment of length 11 cm. Find a point R on it which divides it in the ratio 4:5. Write the measurements of each part and give Justification.

 $\mathbb{R} + \mathbb{C} \left\langle \stackrel{\circ}{\downarrow} \right\rangle [O.E.B.]$

Sol. Try yourself similar to Q.No. 9 of LATQ.