Quadratic Equations ## NCERT TEXTBOOK QUESTIONS SOLVED #### **EXERCISE 4.1** **Q. 1.** Check whether the following are quadratic equations: (i) $$(x + 1)^2 = 2(x - 3)$$ (i) $$(x + 1)^2 = 2(x - 3)$$ (ii) $x^2 - 2x = (-2)(3 - x)$ (iii) $$(x-2)(x+1) = (x-1)(x+3)$$ (iv) $(x-3)(2x+1) = x(x+5)$ $$(iv) (x-3) (2x+1) = x(x+5)$$ (v) $$(2x-1)(x-3) = (x+5)(x-1)$$ (vi) $x^2 + 3x + 1 = (x-2)^2$ (vii) $$(x + 2)^3 = 2x(x^2 - 1)$$ (viii) $x^3 - 4x^2 - x + 1 = (x - 2)^3$ Sol. (i) $$(x + 1)^2 = 2(x - 3)$$ We have: $$(x + 1)^{2} = 2 (x - 3)$$ $$\Rightarrow x^{2} + 2x + 1 = 2x - 6$$ $$\Rightarrow x^{2} + 2x + 1 - 2x + 6 = 0$$ $$\Rightarrow x^{2} + 7 = 0$$ Since $x^2 + 7$ is a quadratic polynomial $\therefore (x + 1)^2 = 2(x - 3)$ is a quadratic equation. (ii) $$x^2 - 2x = (-2)(3 - x)$$ We have: $$x^{2} - 2x = (-2)(3 - x)$$ $$\Rightarrow x^{2} - 2x = -6 + 2x$$ $$\Rightarrow x^{2} - 2x - 2x + 6 = 0$$ $$\Rightarrow x^{2} - 4x + 6 = 0$$ Since $x^2 - 4x + 6$ is a quadratic polynomial $\therefore x^2 - 2x = (-2)(3 - x)$ is a quadratic equation. (iii) $$(x-2)(x+1) = (x-1)(x+3)$$ We have: $$(x-2) (x+1) = (x-1) (x+3)$$ $$\Rightarrow x^2 - x - 2 = x^2 + 2x - 3$$ $$\Rightarrow x^2 - x - 2 - x^2 - 2x + 3 = 0$$ $$\Rightarrow -3x + 1 = 0$$ Since -3x + 1 is a linear polynomial \therefore (x-2)(x+1) = (x-1)(x+3) is not quadratic equation. (iv) $$(x-3)(2x+1) = x(x+5)$$ We have: $$(x-3)(2x+1) = x(x+5)$$ $$\Rightarrow 2x^2 + x - 6x - 3 = x^2 + 5x$$ $$\Rightarrow 2x^2 - 5x - 3 - x^2 - 5x = 0$$ $$\Rightarrow x^2 + 10x - 3 = 0$$ Since $x^2 + 10x - 3$ is a quadratic polynomial $\therefore (x - 3)(2x + 1) = x(x + 5)$ is a quadratic equation. (v) $$(2x-1)(x-3) = (x+5)(x-1)$$ We have: $$(2x-1)(x-3) = (x+5)(x-1)$$ $$\Rightarrow 2x^{2} - 6x - x + 3 = x^{2} - x + 5x - 5$$ $$\Rightarrow 2x^{2} - x^{2} - 6x - x + x - 5x + 3 + 5 = 0$$ $$\Rightarrow x^{2} - 11x + 8 = 0$$ Since $x^2 - 11x + 8$ is a quadratic polynomial $$\therefore$$ $(2x-1)(x-3) = (x+5)(x-1)$ is a quadratic equation. (vi) $$x^2 + 3x + 1 = (x - 2)^2$$ We have: $$x^{2} + 3x + 1 = (x - 2)^{2}$$ $$\Rightarrow x^{2} + 3x + 1 = x^{2} - 4x + 4$$ $$\Rightarrow x^{2} + 3x + 1 - x^{2} + 4x - 4 = 0$$ $$\Rightarrow 7x - 3 = 0$$ Since 7x - 3 is a linear polynomial. $$\therefore$$ $x^2 + 3x + 1 = (x - 2)^2$ is not a quadratic equation. (vii) $$(x + 2)^3 = 2x(x^2 - 1)$$ We have: $$(x + 2)^{3} = 2x(x^{2} - 1)$$ $$\Rightarrow x^{3} + 3x^{2}(2) + 3x(2)^{2} + (2)^{3} = 2x^{3} - 2x$$ $$\Rightarrow x^{3} + 6x^{2} + 12x + 8 = 2x^{3} - 2x$$ $$\Rightarrow x^{3} + 6x^{2} + 12x + 8 - 2x^{3} + 2x = 0$$ $$\Rightarrow -x^{3} + 6x^{2} + 14x + 8 = 0$$ Since $-x^3 + 6x^2 + 14x + 8$ is a polynomial of degree 3 $$\therefore$$ $(x + 2)^3 = 2x(x^2 - 1)$ is not a quadratic equation. (viii) $$x^3 - 4x^2 - x + 1 = (x - 2)^3$$ We have: $$x^{3} - 4x^{2} - x + 1 = (x - 2)^{3}$$ $$\Rightarrow x^{3} - 4x^{2} - x + 1 = x^{3} + 3x^{2}(-2) + 3x(-2)^{2} + (-2)^{3}$$ $$\Rightarrow x^{3} - 4x^{2} - x + 1 = x^{3} - 6x^{2} + 12x - 8$$ $$\Rightarrow x^{3} - 4x^{2} - x - 1 - x^{3} + 6x^{2} - 12x + 8 = 0$$ $$\Rightarrow 2x^{2} - 13x + 9 = 0$$ Since $2x^2 - 13x + 9$ is a quadratic polynomial $$\therefore x^3 - 4x^2 - x + 1 = (x - 2)^3$$ is a quadratic equation. - **Q. 2.** Represent the following situations in the form of quadratic equations: - (i) The area of a rectangular plot is 528 m^2 . The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot. - (ii) The product of two consecutive positive integers is 306. We need to find the integers. - (iii) Rohan's mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan's present age. - (iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train. - **Sol.** (*i*) Let the breadth = x metres $$\therefore$$ Length = 2 (Breadth) + 1 $$\therefore$$ Length = $(2x + 1)$ metres Since Length × Breadth = Area $$\therefore (2x + 1) \times x = 528$$ $$\Rightarrow$$ $2x^2 + x = 528$ $$\Rightarrow 2x^2 + x - 528 = 0$$ Thus, the required quadratic equation is $$2x^2 + x - 528 = 0$$ (ii) Let the two consecutive numbers be x and (x + 1). \therefore Product of the numbers = 306 $$\therefore \qquad x (x + 1) = 306$$ $$\Rightarrow$$ $x^2 + x = 306$ $$\Rightarrow$$ $x^2 + x - 306 = 0$ Thus, the required equdratic equation is $$x^2 + x - 306 = 0$$ (iii) Let the present age = x $$\therefore$$ Mother's age = $(x + 26)$ years After 3 years His age = $$(x + 3)$$ years Mother's age = $$[(x + 26) + 3]$$ years = $(x + 29)$ years According to the condition, $$\Rightarrow (x+3) \times (x+29) = 360$$ $$\Rightarrow x^2 + 29x + 3x + 87 = 360$$ $$\Rightarrow x^2 + 29x + 3x + 87 - 360 = 0$$ $$\Rightarrow x + 25x + 3x + 67 = 300 = 0$$ $$\Rightarrow x^2 + 32x - 273 = 0$$ Thus, the required quadratic equation is $$x^2 + 32x - 273 = 0$$ (iv) Let the speed of the train = u km/hr Distance covered = 480 km Time taken = Distance $$\div$$ Speed = $$(480 \div u)$$ hours $$=\frac{480}{u}$$ hours In second case, Speed = $$(u - 8)$$ km/hour $$\therefore \quad \text{Time taken} = \frac{\text{Distance}}{\text{speed}} = \frac{480}{(u-8)} \text{ hours}$$ According to the condition, $$\frac{480}{u-8} - \frac{480}{u} = 3$$ $$\Rightarrow 480u - 480(u-8) = 3u(u-8)$$ $$\Rightarrow 480u - 480u + 3840 = 3u^2 - 24u$$ $$\Rightarrow 3840 - 3u^2 + 24u = 0$$ $$\Rightarrow 1280 - u^2 + 8u = 0$$ $$\Rightarrow -1280 + u^2 - 8u = 0$$ $$\Rightarrow u^2 - 8u - 1280 = 0$$ Thus, the required quadratic equation is $$u^2 - 8u - 1280 = 0$$ # NCERT TEXTBOOK QUESTIONS SOLVED #### **EXERCISE 4.2** **Q. 1.** Find the roots of the following quadratic equations by factorisation: (i) $$x^2 - 3x - 10 = 0$$ (ii) $$2x^2 + x - 6 = 0$$ (iii) $$\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$$ (iv) $2x^2 - x + \frac{1}{8} = 0$ (iv) $$2x^2 - x + \frac{1}{8} = 0$$ (v) $$100x^2 - 20x + 1 = 0$$ (i) $x^2 - 3x - 10 = 0$ Sol. We have: $$x^{2} - 3x - 10 = 0$$ $$\Rightarrow x^{2} - 5x + 2x - 10 = 0$$ $$\Rightarrow x(x - 5) + 2(x - 5) = 0$$ $$\Rightarrow (x - 5)(x + 2) = 0$$ Either $x - 5 = 0 \Rightarrow x = 5$ or $x + 2 = 0 \Rightarrow x = -2$ Thus, the required roots are x = 5 and x = -2. (ii) $$2x^2 + x - 6 = 0$$ We have: $$2x^{2} + x - 6 = 0$$ $$\Rightarrow 2x^{2} + 4x - 3x - 6 = 0$$ $$\Rightarrow 2x(x+2) - 3(x+2) = 0$$ $$\Rightarrow (x+2)(2x-3) = 0$$ Either $x+2=0 \Rightarrow x=-2$ or $2x-3=0 \Rightarrow x=\frac{3}{2}$ Thus, the required roots are x = -2 and $x = \frac{3}{2}$. (iii) $$\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$$ We have: $$\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$$ $$\Rightarrow \qquad \sqrt{2}x^2 + 2x + 5x + 5\sqrt{2} = 0$$ $$\Rightarrow \sqrt{2}x^2 + (\sqrt{2} \cdot \sqrt{2})x + 5x + 5 \cdot \sqrt{2} = 0$$ $$\Rightarrow \sqrt{2}x \left[x + \sqrt{2}\right] + 5\left[x + \sqrt{2}\right] = 0$$ $$\Rightarrow \left(x + \sqrt{2}\right) \left(\sqrt{2}x + 5\right) = 0$$ Either $x + \sqrt{2} = 0 \Rightarrow x = -\sqrt{2}$ or $\sqrt{2}x + 5 = 0 \Rightarrow x = -\frac{5}{\sqrt{2}}$ Thus, the required roots are $x = -\sqrt{2}$ and $x = \frac{-5}{\sqrt{2}}$. (iv) $$2x^2 - x + \frac{1}{8} = 0$$ We have: $$2x^{2} - x + \frac{1}{8} = 0$$ $$\Rightarrow 16x^{2} - 8x + 1 = 0$$ $$\Rightarrow 16x^{2} - 4x - 4x + 1 = 0$$ $$\Rightarrow 4x(4x - 1) - 1(4x - 1) = 0$$ $$\Rightarrow (4x - 1)(4x - 1) = 0$$ $$\Rightarrow x = \frac{1}{4} \text{ and } x = \frac{1}{4}$$ Thus, the required roots are $x = \frac{1}{4}$ and $x = \frac{1}{4}$. $$(v) \ 100x^2 - 20x + 1 = 0$$ We have: $$100x^{2} - 20x + 1 = 0$$ $$\Rightarrow 100x^{2} - 10x - 10x + 1 = 0$$ $$\Rightarrow 10x (10x - 1) - 1 (10x - 1) = 0$$ $$\Rightarrow (10x - 1) (10x - 1) = 0$$ $$\Rightarrow (10x - 1) = 0 \text{ and } (10x - 1) = 0$$ $$\Rightarrow x = \frac{1}{10} \text{ and } x = \frac{1}{10}$$ Thus, the required roots are $x = \frac{1}{10}$ and $x = \frac{1}{10}$. ## Q. 2. Solve the problems given in Example 1. **Sol.** (*i*) We have: $$x^{2} - 45x + 324 = 0$$ $$\Rightarrow x^{2} - 9x - 36x + 324 = 0$$ $$\Rightarrow x(x - 9) - 36(x - 9) = 0$$ $$\Rightarrow (x - 9) (x - 36) = 0$$ Either $x - 9 = 0 \Rightarrow x = 9$ or $x - 36 = 0 \Rightarrow x = 36$ Thus, $x = 9$ and $x = 36$ $$(-9) \times (-36) = 324 \text{ and}$$ $$(-9) + (-36) = -45$$ (ii) We have: $$x^2 - 55x + 750 = 0$$ $\Rightarrow x^2 - 30x - 25x + 750 = 0$ $\Rightarrow x(x - 30) - 25(x - 30) = 0$ $\Rightarrow (x - 30)(x - 25) = 0$ Either $x - 30 = 0 \Rightarrow x = 30$ or $x - 25 = 0 \Rightarrow x = 25$ Thus, $x = 30$ and $x = 25$. - Q. 3. Find two numbers whose sum is 27 and product is 182. - **Sol.** Here, sum of the numbers is 27. Let one of the numbers be x. \therefore Other number = 27 - x According to the condition, Product of the numbers = 182 $$\Rightarrow x (27 - x) = 182$$ $$\Rightarrow 27x - x^2 = 182$$ $$\Rightarrow -x^2 + 27x - 182 = 0$$ $$\Rightarrow x^2 - 27x + 182 = 0$$ $$\Rightarrow x^2 - 13x - 14x + 182 = 0$$ $$\Rightarrow x (x - 13) - 14 (x - 13) = 0$$ $$\Rightarrow (x - 13) (x - 14) = 0$$ Either $x - 13 = 0 \Rightarrow x = 13$ or $x - 14 = 0 \Rightarrow x = 14$ Thus, the required numbers are 13 and 14. - **Q. 4.** Find two consecutive positive integers, sum of whose squares is 365. - **Sol.** Let the two consecutive positive integers be x and (x + 1). Since the sum of the squares of the numbers = 365 $$x^{2} + (x + 1)^{2} = 365$$ $$x^{2} + [x^{2} + 2x + 1] = 365$$ $$x^{2} + x^{2} + 2x + 1 = 365$$ $$x^{2} + x^{2} + 2x + 1 = 365$$ $$x^{2} + 2x + 1 - 365 = 0$$ $$x^{2} + 2x - 364 = 0$$ $$x^{2} + x - 182 = 0$$ $$x^{2} + 14x - 13x - 182 = 0$$ $$x^{2} + 14x - 13(x + 14) = 0$$ $$x^{2} + 14 + x - 13(x + 14) = 0$$ $$x^{2} + x - 18 -$$ Thus, the required consecutive positive integers are 13 and 14. x + 1 = 13 + 1 = 14 - **Q. 5.** The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides. - **Sol.** Let the base of the given right triangle be 'x' cm. - \therefore
Its height = (x 7) cm $$\therefore$$ Hypotenuse= $\sqrt{(Base)^2 + (Height)^2}$ $$\therefore 13 = \sqrt{x^2 + (x-7)^2}$$ Squaring both sides, we get $$\therefore (-12) \times 5 = -60$$ and $(-12) + 5 = -7$ $$\Rightarrow (x - 12) (x + 5) = 0$$ Either $x - 12 = 0 \Rightarrow x = 12$ either $$x - 12 = 0 \Rightarrow x = 12$$ or $x + 5 = 0 \Rightarrow x = -5$ But the side of triangle can never be negative, $$\Rightarrow$$ $x = 12$ - \therefore Length of the base = 12 cm - \Rightarrow Length of the height = (12 7) cm = 5 cm Thus, the required base = 12 cm and height = 5 cm. - **Q. 6.** A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was ₹90, find the number of articles produced and the cost of each article. - **Sol.** Let the number of articles produced in a day = x - ∴ Cost of production of each article = ₹ (2x + 3) According to the condition, Total cost = 90 $$x \times (2x + 3) = 90$$ $x \times (2x + 3) = 90$ 3$ But the number of articles cannot be negative. $$\therefore \qquad x = \frac{-15}{2} \text{ is not required}$$ $$\Rightarrow$$ $x = 6$ ∴ Cost of each article = ₹ (2 × 6 + 3) = ₹ 15 Thus, the required number of articles produced is 6 and the cost of each article is ₹ 15. • Solving a quadratic equation by completing the square: Example: Solve $x^2 + 4x - 5 = 0$. $$x^{2} + 4x - 5 = 0$$ $$\Rightarrow x^{2} + (2)(2)(1)x - 5 = 0$$ $$\Rightarrow x^{2} + (2)(2)(1)x + (2)^{2} - (2)^{2} - 5 = 0$$ $$\Rightarrow (x + 2)^{2} - 9 = 0$$ $$\Rightarrow (x + 2)^{2} = 9$$ $$\Rightarrow x + 2 = \pm 3$$ $$\Rightarrow x = 3 - 2 \quad \text{or} \quad x = -3 - 2$$ $$\Rightarrow x = 1 \quad \text{or} \quad x = -5$$ - Steps involved in solving $ax^2 + bx + c = 0$ - 1. Divide the equation by *a*: $$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$ - 2. Write $\frac{b}{a}$ as $2\left(\frac{b}{2a}\right)$ (1), and c as $\left(\frac{b}{2a}\right)^2 \left(\frac{b}{2a}\right)^2 + c$. - 3. Therefore, the equation becomes: $$x^{2} + 2\left(\frac{b}{2a}\right)(1) + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + c = 0$$ Here, the first three terms are a perfect square. $$\Rightarrow \left(x + \frac{b}{2a}\right)^2 - \left[\left(\frac{b}{2a}\right)^2 - c\right] = 0$$ - 4. Now this can be solved easily to first find the value of $x + \frac{b}{2a}$ and then x. - Quadratic Formula: The roots of $ax^2 + bx + c = 0$ are also given simply by the quadratic formula: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ i.e., $$x = \frac{-b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a}$$ or $$x = \frac{-b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$$ The term $b^2 - 4ac$ is said to be the discriminant D. - (i) If D > 0, roots exist and they are distinct. - (ii) If D = 0, the two roots are equal and real. - (iii) If D < 0, $\sqrt{b^2 4ac}$ does not exist, so there are no real roots. # NCERT TEXTBOOK QUESTIONS SOLVED ### **EXERCISE 4.3** **Q. 1.** Find the roots of the following quadratic equations, if they exist, by the method of completing the square: (i) $$2x^2 - 7x + 3 = 0$$ (ii) $$2x^2 + x - 4 = 0$$ (iii) $$4x^2 + 4\sqrt{3x} + 3 = 0$$ (iv) $$2x^2 + x + 4 = 0$$ Sol. (i) $2x^2 - 7x + 3 = 0$ Dividing throughout by the co-efficient of x^2 , we get $$x^{2} - \frac{7}{2}x + \frac{3}{2} = 0$$ $$\Rightarrow \left\{x - \frac{1}{2}\left(\frac{7}{2}\right)\right\}^{2} - \left(\frac{7}{4}\right)^{2} + \frac{3}{2} = 0$$ $$\Rightarrow \left\{x - \frac{7}{4}\right\}^{2} - \frac{49}{16} + \frac{3}{2} = 0$$ $$\Rightarrow \left\{x - \frac{7}{4}\right\}^{2} - \frac{49}{16} + \frac{24}{16} = 0$$ $$\Rightarrow \left\{x - \frac{7}{4}\right\}^{2} - \frac{25}{16} = 0$$ $$\Rightarrow \left\{x - \frac{7}{4}\right\}^{2} = \frac{25}{16} = \left(\frac{5}{4}\right)^{2}$$ $$\Rightarrow x - \frac{7}{4} = \pm \frac{5}{4}$$ Case I: When $$\frac{5}{4}$$ is +ve, then $$x - \frac{7}{4} = \frac{5}{4} \implies x = \frac{5}{4} + \frac{7}{4}$$ $$\Rightarrow x = \frac{12}{4} = 3$$ Case II: When $$\frac{5}{4}$$ is $-ve$, then $$x - \frac{7}{4} = -\frac{5}{4} \implies x = \frac{-5}{4} + \frac{7}{4}$$ $$\Rightarrow x = \frac{2}{4} = \frac{1}{2}$$ Thus, required roots are $$x = 3$$ and $x = \frac{1}{2}$ ## (ii) $2x^2 + x - 4 = 0$ We have: $$2x^2 + x - 4 = 0$$ Dividing throughout by 2, $$x^{2} + \frac{x}{2} - 2 = 0$$ $$\Rightarrow \left\{ x + \frac{1}{2} \cdot \frac{1}{2} \right\}^{2} - \left(\frac{1}{4}\right)^{2} - 2 = 0$$ $$\Rightarrow \left(x + \frac{1}{4} \right)^{2} - \frac{1}{16} - 2 = 0$$ $$\Rightarrow \left(x + \frac{1}{4} \right)^{2} - \frac{33}{16} = 0$$ $$\Rightarrow \left(x + \frac{1}{4} \right)^{2} = \frac{33}{16} = \left(\frac{\sqrt{33}}{4}\right)^{2}$$ $$\Rightarrow \left(x + \frac{1}{4} \right) = \pm \frac{\sqrt{33}}{4}$$ #### Case I: When $\frac{\sqrt{33}}{4}$ is positive, then $$x + \frac{1}{4} = \frac{\sqrt{33}}{4} \implies x = \frac{\sqrt{33}}{4} - \frac{1}{4}$$ $$\Rightarrow x = \frac{\sqrt{33} - 1}{4}$$ #### Case II: When $\frac{\sqrt{33}}{4}$ is negative, then $$x + \frac{1}{4} = -\frac{\sqrt{33}}{4} \implies x = \frac{-\sqrt{33}}{4} - \frac{1}{4}$$ $$\Rightarrow x = \frac{-\sqrt{33} - 1}{4}$$ Thus, the required roots are $$x = \frac{\sqrt{33} - 1}{4}$$ and $x = \frac{-\sqrt{33} - 1}{4}$ (iii) $$4x^2 + 4\sqrt{3}x + 3 = 0$$ Dividing throughout by 4, we have: $$x^2 + \sqrt{3}x + \frac{3}{4} = 0$$ $$\Rightarrow \left[x + \left(\frac{1}{2} \cdot \sqrt{3}\right)\right]^2 - \left(\frac{1}{2}\sqrt{3}\right)^2 + \frac{3}{4} = 0$$ $$\Rightarrow \left[x + \frac{\sqrt{3}}{2}\right]^2 - \frac{3}{4} + \frac{3}{4} = 0$$ $$\Rightarrow \left[x + \frac{\sqrt{3}}{2}\right]^2 = 0$$ $$\Rightarrow \left(x + \frac{\sqrt{3}}{2}\right)\left(x + \frac{\sqrt{3}}{2}\right) = 0$$ $$\Rightarrow x = -\frac{\sqrt{3}}{2} \text{ and } x = -\frac{\sqrt{3}}{2}$$ (iv) $2x^2 + x + 4 = 0$ Dividing throughout by 2, we have: $$x^{2} + \frac{x}{2} + 2 = 0$$ $$\Rightarrow \left[x + \frac{1}{4}\right]^{2} - \left(\frac{1}{4}\right)^{2} + 2 = 0$$ $$\Rightarrow \left[x + \frac{1}{4}\right]^{2} - \frac{1}{16} + 2 = 0$$ $$\Rightarrow \left[x + \frac{1}{4}\right]^{2} + \frac{31}{16} = 0$$ $$\Rightarrow \left[x + \frac{1}{4}\right]^{2} = -\frac{31}{16}$$ But the square of a number cannot be negative. $$\therefore \left[x + \frac{1}{4} \right]^2$$ cannot be a real value. So, no real roots exist. \Rightarrow There is no real value of x satisfying the given equation. Q. 2. Find the roots of the following quadratic equations, using the quadratic formula: (i) $$2x^2 - 7x + 3 = 0$$ (ii) $$2x^2 + x - 4 = 0$$ (iii) $$4x^2 + 4\sqrt{3}x + 3 = 0$$ (iv) $$2x^2 + x + 4 = 0$$ Sol. (i) $$2x^2 - 7x + 3 = 0$$ Comparing the given equation with $ax^2 + bx + c = 0$, we have: $$a = 2$$ $$b = -7$$ $$c = 3$$ $$b^2 - 4ac = (-7)^2 - 4 (2) (3)$$ $$= 49 - 24 = 25 \ge 0$$ Since $b^2 - 4ac > 0$:. The given equation has real roots. The roots are given by $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-(-7) \pm \sqrt{25}}{2(2)}$$ $$= \frac{7 \pm 5}{4}$$ Taking +ve sign, $$x = \frac{7+5}{4} = \frac{12}{4} = 3$$ Taking -ve sign, $$x = \frac{7-5}{4} = \frac{2}{4} = \frac{1}{2}$$ Thus, the roots of the given equation are $$x = 3$$ and $x = \frac{1}{2}$ (ii) $$2x^2 + x - 4 = 0$$ Comparing the given equation with $ax^2 + bx + c = 0$ we have: $$a = 2$$ $$b = 1$$ $$c = -4$$ $$b^2 - 4ac = (1)^2 - 4 (2) (-4)$$ $$= 1 + 32$$ $$= 33 > 0$$ Since $b^2 - 4ac > 0$:. The given equation has equal roots. The roots are given by $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-1 \pm \sqrt{33}}{2(2)} = \frac{-1 \pm \sqrt{33}}{4}$$ Taking +ve sign, $$x = \frac{-1 + \sqrt{33}}{4}$$ Taking -ve sign, $$x = \frac{-1 - \sqrt{33}}{4}$$ Thus, the required roots are: $$x = \frac{-1 + \sqrt{33}}{4}$$ and $x = \frac{-1 - \sqrt{33}}{4}$ (iii) $$4x^2 + 4\sqrt{3}x + 3 = 0$$ Comparing the given equation with $ax^2 + bx + c = 0$, we have: $$a = 4$$ $$b = 4\sqrt{3}$$ $$c = 3$$ $$b^{2} - 4ac = \left(4\sqrt{3}\right)^{2} - 4(4)(3)$$ $$= [16 \times 3] - 48$$ $$= 48 - 48 = 0$$ Since $b^2 - 4ac = 0$:. The given equation has real roots, which are given by: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-4\sqrt{3} \pm \sqrt{0}}{2(4)}$$ $$= \frac{-4\sqrt{3} \pm 0}{8} = \frac{-\sqrt{3} \pm 0}{2}$$ $$\therefore x = \frac{-\sqrt{3}}{2} \text{ and } x = \frac{-\sqrt{3}}{2}$$ (iv) $$2x^2 + x + 4 = 0$$ Comparing the given equation with $ax^2 + bx + c = 0$, we have: $$a = 2$$ $$b = 1$$ $$c = 4$$ $$b^2 - 4ac = (1)^2 - 4 (2) (4)$$ $$= 1 - 32 = -31 < 0$$ Since $b^2 - 4ac$ is less than 0, therefore the given equation does not have real roots. Q. 3. Find the roots of the following equations: (i) $$x - \frac{1}{x} = 3$$, $x \neq 0$ (ii) $\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}$, $x \neq -4$, 7 [CBSE 2012] Sol. (i) $$x - \frac{1}{x} = 3, x \neq 0$$ Here, we have: $$x - \frac{1}{x} = 3$$ $$\Rightarrow x^2 - 1 = 3x$$ $$\Rightarrow x^2 - 3x - 1 = 0$$...(1) Comparing (1) with $ax^2 + bx + c = 0$, we have: $$a = 1$$ $$b = -3$$ $$c = -1$$ $$b^{2} - 4ac = (-3)^{2} - 4(1)(-1)$$ $$= 9 + 4 = 13 > 0$$ $$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-(-3) \pm \sqrt{13}}{2(1)}$$ $$= \frac{3 \pm \sqrt{13}}{2}$$ Now, taking +ve sign, $$x = \frac{3 + \sqrt{13}}{2}$$ Taking -ve sign, $$x = \frac{3 - \sqrt{13}}{2}$$ Thus, the required roots of the given equation are: $$x = \frac{3 + \sqrt{13}}{2}$$ and $x = \frac{3 - \sqrt{13}}{2}$ (ii) $$\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}$$; $x \neq -4$, 7 We have: $$\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}$$ $$\Rightarrow (x-7) - (x+4) = \frac{11}{30}(x+4)(x-7)$$ $$\Rightarrow x-7-x-4 = \frac{11}{30}(x^2-3x-28)$$ $$\Rightarrow -11 \times 30 = 11(x^2-3x-28)$$ $$\Rightarrow -30 = x^2-3x-28$$ $$\Rightarrow x^2-3x-28+30=0$$ $$\Rightarrow x^2-3x+2=0 \qquad ...(1)$$ Comparing (1) with $ax^2 + bx + c = 0$, we have: $$a = 1$$ $$b = -3$$ $$c = 2$$ $$b^2 - 4ac = (-3)^2
- 4 (1) (2)$$ $$= 9 - 8 = 1 > 0$$:. The quadratic equation (1) has real roots, which are given by: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-(-3) \pm \sqrt{1}}{2(1)}$$ $$= \frac{3 \pm 1}{2}$$ Taking +ve sign, we have: $$x = \frac{3+1}{2} = \frac{4}{2} = 2$$ Taking –ve sign, we have: $$x = \frac{3-1}{2} = 1$$ Thus, the roots of the given equation are: $$x = 2$$ and $x = 1$. **Q. 4.** The sum of the reciprocals of Rehman's ages, (in years) 3 years ago and 5 years from now is $\frac{1}{3}$. Find his present age. **Sol.** Let the present age of Rehman = x \therefore 3 years ago Rehman's age = (x - 3) years 5 years later Rehman's age = (x + 5) years Now, according to the condition, $$\frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3}$$ $$\Rightarrow \frac{(x+5) + (x-3)}{(x-3)(x+5)} = \frac{1}{3}$$ $$\Rightarrow 3 [x+5+x-3] = (x-3)(x+5)$$ $$\Rightarrow 3 [2x+2] = x^2 + 2x - 15$$ $$\Rightarrow 6x+6 = x^2 + 2x - 15$$ $$\Rightarrow x^2 + 2x - 6x - 15 - 6 = 0$$ $$\Rightarrow x^2 - 4x - 21 = 0 \qquad ...(1)$$ Now, comparing (1) with $ax^2 + bx + c = 0$, we have: $$a = 1$$ $$b = -4$$ $$c = -21$$ $$b^2 - 4ac = (-4)^2 - 4 (1) (-21)$$ $$= 16 + 84$$ $$= 100$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-(-4) \pm \sqrt{100}}{2(1)}$$ $$= \frac{4 \pm 10}{2}$$ Taking positive sign, we have: $$x = \frac{4+10}{2} = \frac{14}{2} = 7$$ Taking negative sign, we have: $$x = \frac{4-10}{2} = \frac{-6}{2} = -3$$ Since age cannot be negative, $$\therefore \qquad x \neq -3 \implies x = 7$$ So, the present age of Rehman = 7 years. - **Q. 5.** In a class test, the sum of Shefali's marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210? Find her marks in the two subjects. [CBSE 2012] - **Sol.** Let, Shefali's marks in Mathematics = x \therefore Marks in English = (30 - x) [: Sum of their marks in Eng. and Maths = 30] Now, according to the condition, $$(x + 2) \times [(30 - x) - 3] = 210$$ $$\Rightarrow (x + 2) \times (30 - x - 3) = 210$$ $$\Rightarrow (x + 2) (-x + 27) = 210$$ $$\Rightarrow -x^2 + 25x + 54 = 210$$ $$\Rightarrow -x^2 + 25x + 54 - 210 = 0$$ $$\Rightarrow -x^2 + 25x - 156 = 0$$ $$\Rightarrow x^2 - 25x + 156 = 0 \qquad ...(1)$$ Now, comparing (1) with $ax^2 + bx + c = 0$ $$a = 1$$ $$b = -25$$ $$c = 156$$ $$\therefore b^2 - 4ac = (-25)^2 - 4(1) (156)$$ $$= 625 - 624 = 1$$ Since, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $$\Rightarrow \qquad x = \frac{-(-25) \pm \sqrt{1}}{2(1)}$$ $$\Rightarrow \qquad x = \frac{25 \pm 1}{2}$$ Taking +ve sign, we have $$x = \frac{25+1}{2} = \frac{26}{2} = 13$$ Taking - ve sign, we get $$x = \frac{25 - 1}{2} = \frac{24}{2} = 12$$ x = 13, then 30 - 13 = 17 x = 12, then 30 - 12 = 18When Thus, marks in Maths = 13, marks in English = 17 marks in Maths = 12, marks in English = 18 - Q. 6. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field. - **Sol.** Let the shorter side (*i.e.*, breadth) = x metres. \therefore The longer side (length) = (x + 30) metres. In a rectangle, diagonal = $$\sqrt{(breadth)^2 + (length)^2}$$ $\Rightarrow x + 60 = \sqrt{x^2 + (x + 30)^2}$ $\Rightarrow x + 60 = \sqrt{x^2 + x^2 + 60x + 900}$ $\Rightarrow (x + 60)^2 = 2x^2 + 60x + 900$ $\Rightarrow x^2 + 120x + 3600 = 2x^2 + 60x + 900$ $\Rightarrow 2x^2 - x^2 + 60x - 120x + 900 - 3600 = 0$ $\Rightarrow x^2 - 60x - 2700 = 0$...(1) Comparing (1) with $ax^2 + bx + c = 0$ $$\therefore \qquad a = 1$$ $$b = -60$$ $$c = -2700$$ $$b^2 - 4ac = (-60)^2 - 4(1)(-2700)$$ $$\Rightarrow b^2 - 4ac = 3600 + 10800$$ $$\Rightarrow b^2 - 4ac = 14400$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow \qquad x = \frac{-(-60) \pm \sqrt{14400}}{2(1)}$$ $$\Rightarrow \qquad x = \frac{60 \pm 120}{2}$$ Taking +ve sign, we get $$x = \frac{60 + 120}{2} = \frac{180}{2} = 90$$ Taking -ve sign, $$x = \frac{60 - 120}{2} = \frac{-60}{2} = -30$$ Since breadth cannot be negative, $$\therefore \qquad x \neq -30 \implies x = 90$$ $$\therefore x + 30 = 90 + 30 = 120$$ Thus, the shorter side = 90 m The longer side = 120 m. - **Q. 7.** The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers. - **Sol.** Let the larger number be x. Since, $(smaller number)^2 = 8 (larger number)$ $$\Rightarrow$$ (smaller number)² = 8x $$\Rightarrow$$ smaller number = $\sqrt{8x}$ Now, according to the condition, $$x^{2} - \left(\sqrt{8x}\right)^{2} = 180$$ $$\Rightarrow \qquad x^{2} - 8x = 180$$ $$\Rightarrow \qquad x^{2} - 8x - 180 = 0 \qquad \dots(1)$$ Comparing (1) with $ax^2 + bx + c = 0$, we have: $$a = 1$$ $$b = -8$$ $$c = -180$$ $$b^{2} - 4ac = (-8)^{2} - 4 (1) (-180)$$ $$= 64 + 720 = 784$$ Since, $$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$ $$\therefore \qquad x = \frac{-(-8) \pm \sqrt{784}}{2(1)}$$ $$\Rightarrow \qquad x = \frac{8 \pm 28}{2}$$ Taking +ve sign, we get $$x = \frac{8+28}{2} = \frac{36}{2} = 18$$ $\because \sqrt{784} = 28$ Taking –ve sign, we get $$x = \frac{8-28}{2} = \frac{-20}{2} = -10$$ But x = -10 is not admissible, \therefore The smaller number = 18 $$\therefore \sqrt{8 \times 18} = \sqrt{144} = \pm 12$$ Thus, the larger number = 12 or -12 Thus, the two numbers are: - **Q. 8.** A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train. [NCERT Exemplar] - **Sol.** Let the uniform speed of the train be x km/hr. Since, time taken by the train = $\frac{\text{Distance}}{\text{Speed}}$ $$\Rightarrow$$ time = $\frac{360}{x}$ hr When speed is 5 km/hr more then time is 1 hour less. $$\Rightarrow \frac{360}{x+5} = \frac{360}{x} - 1$$ $$\Rightarrow \frac{360}{x+5} - \frac{360}{x} = -1$$ $$\Rightarrow 360 \left[\frac{1}{x+5} - \frac{1}{x} \right] = -1$$ $$\Rightarrow \frac{1}{x+5} - \frac{1}{x} = \frac{-1}{360}$$ $$\Rightarrow \frac{x - (x+5)}{x(x+5)} = \frac{-1}{360}$$ $$\Rightarrow \qquad x - x - 5 = \frac{-1(x+5)x}{360}$$ $$\Rightarrow$$ -5 × 360 = -1 (x^2 + 5 x) $$\Rightarrow \qquad -5 \times 360 = -x^2 - 5x$$ $$\Rightarrow \quad x^2 + 5x - 1800 = 0$$ Comparing (1) with $$ax^2 + bx + c = 0$$ $$\Rightarrow$$ $a = 1$ $$b = 5$$ $$c = -1800$$ $:: 360 \times 5 = 1800$...(1) $$b^2 - 4ac = (5)^2 - 4 (1) (-1800)$$ $$= 25 + 7200$$ $$= 7225$$ Since $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow \qquad x = \frac{-5 \pm \sqrt{7225}}{2(1)}$$ $$\Rightarrow x = \frac{-5 \pm 85}{2(1)}$$ Taking +ve sign, we get: $$x = \frac{-5 + 85}{2} = \frac{80}{2} = 40$$ Taking -ve sign, we get $$x = \frac{-5 - 85}{2} = \frac{-90}{2} = -45$$ Since, the speed of a vehicle cannot be negative, $$\therefore$$ $x \neq -45$ Thus, $x = 40 \implies$ speed of the train = 40 km/hr. - **Q. 9.** Two water taps together can fill a tank in $9\frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank. - **Sol.** Let the smaller tap fills the tank in *x* hours. - \therefore The larger tap fills the tank (x 10) hours. - \Rightarrow Time to fill the tank by smaller tap = $\frac{1}{x}$ hours. Time to fill the tank by larger tap = $\frac{1}{x-10}$ hours. Since, the tank filled by the two taps together in 1 hour = $\frac{1}{x} + \frac{1}{x-10} = \frac{x-10+x}{x(x-10)}$ $$= \frac{2x-10}{x^2-10x}$$ Now, according to the condition, $$\frac{75}{8} \left(\frac{2x - 10}{x^2 - 10x} \right) = 1$$ $$\Rightarrow \frac{75(2x-10)}{8(x^2-10x)} = 1$$ $$9\frac{3}{8} = \frac{75}{8}$$ $\because \sqrt{7225} = 85$ $$\Rightarrow \frac{150x - 750}{8x^2 - 80x} = 1$$ $$\Rightarrow 8x^2 - 80x = 150x - 750$$ $$\Rightarrow 8x^2 - 230x + 750 = 0$$ $$\Rightarrow 6x^2 6x^2$$ Taking, the +ve sign, we get $$x = \frac{230 + 170}{16} = \frac{400}{16} = 25$$ Taking the -ve sign, we get $$x = \frac{230 - 170}{16} = \frac{60}{16} = \frac{15}{4}$$ For $$x = \frac{15}{4}$$, $(x - 10) = \frac{15}{4} - 10 = \frac{-25}{4}$ which is not possible, [: Time cannot be negative] $$x = 25$$ $x - 10 = 25 - 10 = 15$ Thus, time to fill the tank by the smaller tap alone = 25 hours and larger tap alone = 15 hours. - **Q. 10.** An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is 11 km/h more than that of the passenger train, find the average speed of the two trains. - **Sol.** Let the average speed of the passenger train be x km/hr - \therefore Average speed of the express train = (x + 11) km/hr Total distance covered = 132 km Also, Time = $$\frac{\text{Distance}}{\text{Speed}}$$ Time taken by the passenger train = $\frac{132}{x}$ hour Time taken by the express train = $\frac{132}{x+11}$ hour According to the condition, we get $$\frac{132}{x+11} = \left(\frac{132}{x}\right) - 1$$ $$\Rightarrow \frac{132}{x+11} - \frac{132}{x} = -1$$ $$\Rightarrow 132 \left[\frac{1}{x+11} - \frac{1}{x} \right] = -1$$ $$\Rightarrow 132 \left[\frac{x - x - 11}{x(x+11)} \right] = -1$$ $$\Rightarrow 132 \left\lceil \frac{-11}{x^2 + 11x} \right\rceil = -1$$ $$\Rightarrow -11 (132) = -1 (x^2 + 11x)$$ $$\Rightarrow -1452 = -1 (x^2 + 11x)$$ $$\Rightarrow \qquad -1452 - -1(x^{-} + 11x)$$ $$\Rightarrow \qquad x^{2} + 11x - 1452 = 0$$ Comparing (1) with $$ax^2 + bx + c = 0$$, $$a = 1$$ $$b = 11$$ $$c = -1452$$ $$b^2 - 4ac = (11)^2 - 4 (1) (-1452)$$ $$\Rightarrow$$ $b^2 - 4ac = 121 + 5808 = 5929$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$= \frac{-11 \pm \sqrt{5929}}{2(1)} = \frac{-11 \pm 77}{2}$$ ∴ Taking +ve sign, we get $$x = \frac{-11 + 77}{2} = \frac{66}{2} = 33$$...(1) $\because \sqrt{5929} = 77$ Taking –ve sign, we get $$x = \frac{-11 - 77}{2} = \frac{-88}{2} = -44$$ But average speed cannot be negative
$$\therefore$$ $x \neq -44$ $$\therefore$$ $x = 33$ - ⇒ Average speed of the passenger train = 33 km/hr - \therefore Average speed of the express train = (x + 11) km/hr $$= (33 + 11) \text{ km/hr}$$ - **Q. 11.** Sum of the areas of two squares is 468 m^2 . If the difference of their perimeters is 24 m, find the sides of the two squares. - **Sol.** Let the side of the smaller square be x m. - \Rightarrow Perimeter of the smaller square = 4x m. - \therefore Perimeter of the larger square = (4x + 24) m - \Rightarrow Side of the larger square = $\frac{\text{Perimeter}}{4}$ $$= \frac{4x + 24}{4} m = \frac{4(x+6)}{4} m = (x+6) m$$ \therefore Area of the smaller square = (side)² = (x)² m² Area of the larger square = $(x + 6)^2$ m² According to the condition, $$x^{2} + (x + 6)^{2} = 468$$ $$\Rightarrow x^{2} + x^{2} + 12x + 36 = 468$$ $$\Rightarrow 2x^{2} + 12x - 432 = 0$$ $$\Rightarrow x^{2} + 6x - 216 = 0$$...(1) Comparing (1) with $ax^2 + bx + c = 0$ $$\begin{array}{ccc} \therefore & & a = 1 \\ & b = 6 \\ & c = -216 \end{array}$$ $$b^2 - 4ac = (6)^2 - 4 (1) (-216)$$ $$= 36 + 864 = 900$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\therefore \qquad x = \frac{-6 \pm \sqrt{900}}{2(1)}$$ $$\Rightarrow \qquad x = \frac{-6 \pm 30}{2}$$ Taking +ve sign, we have: $$x = \frac{-6+30}{2} = \frac{24}{2} = 12$$ Taking -ve sign, we get $$x = \frac{-6-30}{2} = \frac{-36}{2} = -18$$ But the length of a square cannot be negative $$\therefore$$ $x = 12$ \Rightarrow Length of the smaller square = 12 m Thus, the length of the larger square = x + 6 $$= 12 + 6$$ $$= 18 \text{ m}$$ ## NCERT TEXTBOOK QUESTIONS SOLVED ### **EXERCISE 4.4** **Q. 1.** Find the nature of the roots of the following quadratic equations. If the real roots exist, find them: (i) $$2x^2 - 3x + 5 = 0$$ (ii) $$3x^2 - 4\sqrt{3}x + 4 = 0$$ (iii) $$2x^2 - 6x + 3 = 0$$ Sol. (i) $$2x^2 - 3x + 5 = 0$$ Comparing the given quadratic equation with $ax^2 + bx + c = 0$, we have: $$a = 2$$ $$b = -3$$ $$c = 5$$ \therefore The discriminant = $b^2 - 4ac$ $$= (-3)^2 - 4(2)(5)$$ $$= 9 - 40$$ $$= -31 < 0$$ Since $b^2 - 4ac$ is negative. :. The given quadratic equation has **no real roots**. (ii) $$3x^2 - 4\sqrt{3}x + 4 = 0$$ Comparing the given quadratic equation with $ax^2 + bx + c = 0$, we get $$b = -4\sqrt{3}$$ $$C = 4$$ $$b^{2} - 4ac = \left[-4\sqrt{3} \right]^{2} - 4(3)(4)$$ $$= (16 \times 3) - 48$$ $$= 48 - 48 = 0$$ Thus, the given quadratic equation has two real roots which are equal. Here, the roots are: $$\frac{-b}{2a} \quad \text{and} \quad \frac{-b}{2a}$$ i.e., $$\frac{-\left(-4\sqrt{3}\right)}{2\times3} \quad \text{and} \quad \frac{-\left(-4\sqrt{3}\right)}{2\times3}$$ $$\Rightarrow \quad \frac{4\sqrt{3}}{2\sqrt{3}\times\sqrt{3}} \quad \text{and} \quad \frac{4\sqrt{3}}{2\sqrt{3}\times\sqrt{3}}$$ $$\Rightarrow \quad \frac{2}{\sqrt{3}} \quad \text{and} \quad \frac{2}{\sqrt{3}}$$ Thus, $$x = \frac{2}{\sqrt{3}} \quad \text{and} \quad x = \frac{2}{\sqrt{3}}$$ (iii) $$2x^2 - 6x + 3 = 0$$ Comparing it with the general quadratic equation, we have: $$a = 2$$ $$b = -6$$ $$c = 3$$ $$b^2 - 4ac = (-6)^2 - 4 (2) (3)$$ $$= 36 - 24$$ $$= 12 > 0$$:. The given quadratic equation has two real and distinct roots, which are given by $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-(-6) \pm \sqrt{12}}{2 \times 2}$$ $$= \frac{6 \pm 2\sqrt{3}}{4}$$ $$= \frac{3 \pm \sqrt{3}}{2}$$ Thus, the roots are: $$x = \frac{3 + \sqrt{3}}{2}$$ and $x = \frac{3 - \sqrt{3}}{2}$ **Q. 2.** Find the values of k for each of the following quadratic equations, so that they have two equal roots: (i) $$2x^2 + kx + 3 = 0$$ (ii) $$kx(x-2) + 6 = 0$$ Sol. (i) $$2x^2 + kx + 3 = 0$$ Comparing the given quadratic equation with $ax^2 + bx + c = 0$, we get $$a = 2$$ $$b = k$$ $$c = 3$$ $$b^2 - 4ac = (-k)^2 - 4 (2) (3)$$ $$= k^2 - 24$$: For a quadratic equation to have equal roots, $$b^2 - 4ac = 0$$ $$\therefore k^2 - 24 = 0 \implies k = \pm \sqrt{24}$$ $$\Rightarrow \qquad k = \pm 2\sqrt{6}$$ Thus, the required values of k are $$2\sqrt{6}$$ and $-2\sqrt{6}$ (ii) $$kx(x-2) + 6 = 0$$ Comparing kx(x-2) + 6 = 0 i.e., $kx^2 - 2kx + 6 = 0$ with $ax^2 + bx + c = 0$, we get $$a = k$$ $$b = -2k$$ $$c = 6$$ $$b^2 - 4ac = (-2k)^2 - 4(k) (6)$$ $$= 4k^2 - 24k$$ Since, the roots are real and equal, $$\therefore b^2 - 4ac = 0$$ $$\Rightarrow$$ $4k^2 - 24k = 0$ $$\Rightarrow$$ 4k (k - 6) = 0 $$\Rightarrow$$ 4 $k = 0$ or $k - 6 = 0$ $$\Rightarrow$$ $k = 0$ or $k = 6$ But k cannot be 0, otherwise, the given equation is no more quadratic. Thus, the required value of k = 6. - **Q. 3.** Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is 800 m? If so, find its length and breadth. - **Sol.** Let the breadth be *x* metres. $$\therefore$$ Length = $2x$ metres $$= 2x \times x \text{ metre}^2$$ = $$2x^2$$ sq. metre. According to the given condition, $$2x^2 = 800$$ $$\Rightarrow \qquad x^2 = \frac{800}{2} = 400$$ $$\Rightarrow \qquad x = \pm \sqrt{400} = \pm 20$$ Therefore, $$x = 20$$ and $x = -20$ But x = -20 is possible (: breadth cannot be negative). $$\therefore$$ $x = 20$ $$\Rightarrow \qquad 2x = 2 \times 20 = 40$$ Thus, length = 40 m and breadth = 20 m **Q. 4.** Is the following situation possible? If so, determine their present ages. The sum of the ages of two friends is 20 years. Four years ago, the product of their ages in years was 48. - **Sol.** Let the age of one friend = x years - \therefore The age of the other friend = (20 x) years [: Sum of their ages is 20 years] #### Four years ago Age of one friend = $$(x - 4)$$ years Age of the other friend = $$(20 - x - 4)$$ years $$= (16 - x)$$ years According to the condition, $$(x-4) \times (16-x) = 48$$ $$\Rightarrow$$ 16x - 64 - x^2 - 4x = 48 $$\Rightarrow$$ $-x^2 - 20x - 64 - 48 = 0$ $$\Rightarrow \qquad -x^2 - 20x - 112 = 0$$ $$\Rightarrow$$ $x^2 + 20x + 112 = 0$...(1) Here, $$a = 1$$, $b = 20$ and $c = 112$ $$b^2 - 4ac = (20)^2 - 4 (1) (112)$$ $$= 400 - 448$$ $$= -48 < 0$$ Since $b^2 - 4ac$ is less than 0. .. The quadratic equation (1) has no real roots. Thus, the given equation is **not possible**. - **Q. 5.** *Is it possible to design a rectangular park of perimeter 80 m and area 400 m²? If so, find its length and breadth.* - **Sol.** Let the breadth of the rectangle be *x* metres. Since, the parimetre of the rectangle = 80 m. $$\therefore$$ 2 [Length + Breadth] = 80 $$2 \left[\text{Length} + x \right] = 80$$ $$\Rightarrow \qquad \text{Length} + x = \frac{80}{2} = 40$$ $$\Rightarrow$$ Length = $(40 - x)$ metres : Area of the rectangle = Length × breadth = $$(40 - x) \times x$$ sq. m $$= 40x - x^2$$ Now, according to the given condition, Area of the rectangle = 400 m^2 $$\therefore \qquad 40x - x^2 = 400$$ $$\Rightarrow -x^2 + 40x - 400 = 0$$ $$\Rightarrow$$ $x^2 - 40x + 400 = 0$...(1) Comparing (1) with $ax^2 + bx + c = 0$, we get $$a = 1$$ $$b = -40$$ $$c = 400$$ $$b^{2} - 4ac = (-40)^{2} - 4 (1) (400)$$ Thus, the equation (1) has two equal and real roots. = 1600 - 1600 = 0 $$\therefore \qquad x = \frac{-b}{2a} \quad \text{and} \quad x = \frac{-b}{2a}$$ $$\therefore \text{ breadth } = \frac{-(-40)}{2(1)} = \frac{40}{2} = 20$$ \therefore Breadth, x = 20 m \therefore Length = (40 - x) = (40 - 20) m = **20 m**. # **MORE QUESTIONS SOLVED** #### I. VERY SHORT ANSWER TYPE QUESTIONS - **Q. 1.** If the roots of the quadratic equation $-ax^2 + bx + c = 0$ are equal then show that $b^2 = 4ac$. - **Sol.** : For equal roots, we have $$b^2 - 4ac = 0$$ $$b^2 = 4ac$$ - $\therefore \qquad b^2 = 4ac$ - **Q. 2.** Find the value of 'k' for which the quadratic equation $kx^2 5x + k = 0$ have real roots. - **Sol.** Comparing $kx^2 5x + k = 0$ with $ax^2 + bx + c = 0$, we have: $$a = k$$ $$b = -5$$ $$c = k$$ $$b^2 - 4ac = (-5)^2 - 4 (k) (k)$$ $$= 25 - 4k^2$$ For equal roots, $b^2 - 4ac = 0$ $$\therefore 25 - 4k^2 = 0$$ $$\Rightarrow$$ $4k^2 = 25$ $$\Rightarrow \qquad k^2 = \frac{25}{4}$$ $$\Rightarrow \qquad k = \pm \sqrt{\frac{25}{4}} = \pm \frac{5}{2}$$ - **Q. 3.** If -4 is a root of the quadratic equation $x^2 + px 4 = 0$ and $x^2 + px + k = 0$ has equal roots, find the value of k. - **Sol.** : (-4) is a root of $x^2 + px 4 = 0$ **Q. 4.** If one root of the quadratic equation $2x^2 - 3x + p = 0$ is 3, find the other root of the quadratic equation. Also find the value of p. **Sol.** We have: $$2x^2 - 3x + p = 0$$...(1) $\therefore a = 2, b = -3 \text{ and } c = p$ Since, the sum of the roots = $\frac{-b}{a}$ $$=\frac{-(-3)}{2}=\frac{3}{2}$$ \therefore One of the roots = 3 $$\therefore \qquad \text{The other root} = \frac{3}{2} - 3 = \frac{-3}{2}$$ Now, substituting x = 3 in (1), we get $$2 (3)^{2} - 3 (3) + p = 0$$ $$\Rightarrow 18 - 9 + p = 0$$ $$\Rightarrow 9 + p = 0 \Rightarrow p = -9$$ **Q. 5.** If one of the roots of $x^2 + px - 4 = 0$ is -4 then find the product of its roots and the value of p. **Sol.** If -4 is a root of the quadratic equation, $$x^{2} + px - 4 = 0$$ $$\therefore (-4)^{2} + (-4)(p) - 4 = 0$$ $$\Rightarrow 16 - 4p - 4 = 0$$ $$\Rightarrow 12 - 4p = 0 \Rightarrow p = 3$$ Now, in $ax^2 + bx + c = 0$, the product of the roots $= \frac{c}{a}$ \therefore Product of the roots in $x^2 - px - 4 = 0$ $$=\frac{-4}{1}=-4$$ - **Q. 6.** For what value of k, does the given equation have real and equal roots? $(k + 1) x^2 - 2 (k - 1) x + 1 = 0.$ - **Sol.** Comparing the given equation with $ax^2 + bx + c = 0$, we have: $$a = k + 1$$ $b = -2 (k - 1)$ $c = 1$ For equal roots, $b^2 - 4ac = 0$ **Q.** 7. Using quadratic formula, solve the following quadratic equation for x: $$x^2 - 2ax + (a^2 - b^2) = 0$$ **Sol.** Comparing $x^2 - 2ax + (a^2 - b^2) = 0$, with $ax^2 + bx + c = 0$, we have: $$a = 1$$, $b = -2a$, $c = a^2 - b^2$ $$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-(-2a) \pm \sqrt{(-2a)^2 - 4(1)(a^2 - b^2)}}{2(1)}$$ $$= \frac{2a \pm \sqrt{4a^2 - 4a^2 + 4b^2}}{2}$$ $$= \frac{2a \pm \sqrt{4b^2}}{2} = \frac{2a \pm 2b}{2} = a \pm
b$$ $$x = (a+b) \quad \text{or} \quad x = (a-b)$$ - **Q. 8.** If one of the roots of the quadratic equation $2x^2 + kx 6 = 0$ is 2, find the value of k. Also find the other root. - Sol. Given equation: $$2x^2 + kx - 6 = 0$$ one root = 2 Substituting x = 2 in $2x^2 + kx - 6 = 0$ We have: $$2 (2)^{2} + k (2) - 6 = 0$$ $$\Rightarrow 8 + 2k - 6 = 0$$ $$\Rightarrow 2k + 2 = 0 \Rightarrow k = -1$$ $$\therefore 2x^2 + kx - 6 = 0 \implies 2x^2 - x - 6 = 0$$ Sum of the roots $$=$$ $\frac{-b}{a} = \frac{1}{2}$ \therefore other root $=$ $\frac{1}{2} - 2$ $=$ $\frac{3}{2}$ **Q. 9.** Determine the value of k for which the quadratic equation $4x^2 - 4kx + 1 = 0$ has equal roots. **Sol.** We have: $$4x^2 - 4kx + 1 = 0$$ Comparing with $ax^2 + bx + c = 0$, we have $$a = 4$$, $b = -4k$ and $c = 1$ $$b^2 - 4ac = (-4k)^2 - 4(4k)(1)$$ $$= 16k^2 - 16$$ For equal roots $$b^2 - 4ac = 0$$ $$16k^2 - 16 = 0$$ $$\Rightarrow$$ 16 $k^2 = 16 \Rightarrow k^2 = 1$ $$\Rightarrow$$ $k = \pm 1$ **Q. 10.** For what value of k, does the quadratic equation $x^2 - kx + 4 = 0$ have equal roots? **Sol.** Comparing $x^2 - kx + 4 = 0$ with $ax^2 + bx + c = 0$, we get $$a = 1$$ $$b = -k$$ $$c = 4$$ $$b^2 - 4ac = (-k)^2 - 4(1)(4) = k^2 - 16$$ For equal roots, $$b^2 - 4ac = 0$$ $$\Rightarrow$$ $k^2 - 16 = 0$ $$\Rightarrow$$ $k^2 = 16$ $$\Rightarrow$$ $k = \pm 4$ **Q. 11.** What is the nature of roots of the quadratic equation $4x^2 - 12x + 9 = 0$? **Sol.** Comparing $4x^2 - 12x + 9 = 0$ with $ax^2 + bx + c = 0$ we get $$a = 4$$ $$b = -12$$ $$c = 9$$ $$b^2 - 4ac = (-12)^2 - 4 (4) (9)$$ $$= 144 - 144 = 0$$ Since $b^2 - 4ac = 0$:. The roots are **real** and **equal**. **Q. 12.** Write the value of k for which the quadratic equation $x^2 - kx + 9 = 0$ has equal roots. (AI CBSE 2009 C) **Sol.** Comparing $$x^2 - kx + 9 = 0$$ with $ax^2 + bx + c = 0$, we get $$a = 1$$ $$b = -k$$ $$c = 9$$ $$b^2 - 4ac = (-k)^2 - 4 (1) (9)$$ $$= k^2 - 36$$ For equal roots, $$b^{2} - 4ac = 0$$ $$\Rightarrow k^{2} - 36 = 0 \Rightarrow k^{2} = 36$$ $$\Rightarrow k = \pm 6$$ **Q. 13.** For what value of k are the roots of the quadratic equation $3x^2 + 2kx + 27 = 0$ real and equal? (CBSE 2008 C) **Sol.** Comparing $3x^2 + 2kx + 27 = 0$ with $ax^2 + bx + c = 0$, we have: $$a = 3$$ $$b = 2k$$ $$c = 27$$ $$b^2 - 4ac = (2k)^2 - 4 (3) (27)$$ $$= 4k^2 - (12 \times 27)$$ For the roots to be real and equal $$b^2 - 4ac = 0$$ $$\Rightarrow 4k^2 - (12 \times 17) = 0$$ $$\Rightarrow \qquad 4k^2 = 12 \times 27$$ $$\Rightarrow \qquad \qquad k^2 = \frac{12 \times 27}{4} = 81$$ $$\Rightarrow$$ $k = \pm 9$ **Q. 14.** For what value of k are the roots of the quadratic equation $kx^2 + 4x + 1 = 0$ equal and real? (CBSE 2008 C) **Sol.** Comparing $kx^2 + 4x + 1 = 0$, with $ax^2 + bx + c = 0$, we get $$a = k$$ $$b = 4$$ $$c = 1$$ $$b^2 - 4ac = (4)^2 - 4 (k) (1)$$ $$= 16 - 4k$$ For equal and real roots, we have $$b^2 - 4ac = 0$$ $$\Rightarrow$$ 16 - 4 $k = 0$ $$\Rightarrow$$ 4 k = 16 $$\Rightarrow \qquad k = \frac{16}{4} = 4$$ **Q. 15.** For what value of k does $(k - 12) x^2 + 2 (k - 12) x + 2 = 0$ have equal roots? (AI CBSE 2008 C) **Sol.** Comparing $$(k - 12) x^2 + 2 (k - 12) x + 2 = 0$$ with $ax^2 + bx + c = 0$, we have: $$a = (k - 12)$$ $$b = 2 (k - 12)$$ $$c = 2$$ $$b^2 - 4ac = [2 (k - 12)]^2 - 4 (k - 12) (2)$$ $$= 4 (k - 12)^2 - 8 (k - 12)$$ $$= 4 (k - 12) [k - 12 - 2]$$ $$= 4 (k - 12) (k - 14)$$ For equal roots, $$b^{2} - 4ac = 0$$ $$\Rightarrow 4 (k - 12) [k - 14] = 0$$ $$\Rightarrow \text{Either } 4 (k - 12) = 0 \Rightarrow k = 12$$ or $$k - 14 = 0 \Rightarrow k = 14$$ But k = 12 makes k - 12 = 0 which is not required **Q. 16.** For what value of k does the equation $9x^2 + 3kx + 4 = 0$ has equal roots? (AI CBSE 2008 C) **Sol.** Comparing $$9x^2 + 3kx + 4 = 0$$ with $ax^2 + bx + c = 0$, we get $$a = 9$$ $$b = 3k$$ $$c = 4$$ $$b^{2} - 4ac = (3k)^{2} - 4 (9) (4)$$ $$= 9k^{2} - 144$$ For equal roots, $$b^{2} - 4ac = 0$$ $$\Rightarrow 9k^{2} - 144 = 0$$ $$\Rightarrow 9k^{2} = 144$$ $$\Rightarrow k^{2} = \frac{144}{9} = 16$$ $$\Rightarrow k = \pm 4$$ ### **II. SHORT ANSWER TYPE QUESTIONS** **Q. 1.** Solve $$2x^2 - 5x + 3 = 0$$. **Sol.** We have: $$2x^2 - 5x + 3 = 0$$...(1) Comparing (1) with $ax^2 + bx + c = 0$, $\therefore a = 2$ $b = -5$ $c = 3$ $$b^2 - 4ac = (-5)^2 - 4 (2) (3)$$ $$= 25 - 24 = 1$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\therefore \qquad x = \frac{-(-5) \pm \sqrt{1}}{2(2)}$$ $$= \frac{5 \pm 1}{4}$$ Taking, + ve sign, $$x = \frac{5+1}{4} = \frac{6}{4} = \frac{3}{2}$$ Taking, -ve sign, $$x = \frac{5-1}{4} = \frac{4}{4} = 1$$ Thus, the required roots are $$x = \frac{3}{2}$$ and $x = 1$ Q. 2. Solve the following quadratic equation: $$2x^2 + 4x - 8 = 0$$ **Sol.** We have: $$2x^2 + 4x - 8 = 0$$ Dividing by 2, we get Comparing (1) with $ax^2 + bx + c = 0$, $$a = 1,$$ $$b = 2$$ $$c = -4$$ $$b^2 - 4ac = (2)^2 - 4 (1) (-4)$$ $$= 4 + 16 = 20$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\therefore \qquad x = \frac{-2 \pm \sqrt{20}}{2(1)}$$ $$\Rightarrow \qquad x = \frac{-2 \pm 2\sqrt{5}}{2}$$ $$\Rightarrow \qquad x = \frac{2\left[-1 \pm \sqrt{5}\right]}{2} = -1 \pm \sqrt{5}$$ Taking +ve sign, we get $$x = \left(-1 + \sqrt{5}\right)$$ Taking -ve sign we get, $$x = \left(-1 - \sqrt{5}\right)$$ Thus, the required roots are $x = (-1 + \sqrt{5})$ and $x = (-1 - \sqrt{5})$. **Q. 3.** Solve: $$\frac{x+1}{x-1} + \frac{x-2}{x+2} = 3$$. [CBSE 2012] Sol. We have, $$\frac{x+1}{x-1} + \frac{x-2}{x+2} = 3$$ $$\therefore \frac{(x+2)(x+1) + (x-2)(x-1)}{(x-1)(x+2)} = 3$$ $$\Rightarrow \frac{(x^2 + 2x + x + 2) + (x^2 - x - 2x + 2)}{x^2 - x + 2x - 2} = 3$$ $$\Rightarrow \frac{(x^2 + 3x + 2) + (x^2 - 3x + 2)}{x^2 + x - 2} = 3$$ $$\Rightarrow x^2 + 3x + 2 + x^2 - 3x + 2 = 3(x^2 + x - 2)$$ $$\Rightarrow 2x^2 + 4 = 3x^2 + 3x - 6$$ $$\Rightarrow 3x^2 + 3x - 6 - 2x^2 - 4 = 0$$ $$\Rightarrow x^2 + 3x - 10 = 0$$ $$\Rightarrow x^2 + 5x - 2x - 10 = 0$$ $$\Rightarrow x + 5 - 2(x + 5) = 0$$ $$\Rightarrow (x + 5) - 2(x + 5) = 0$$ Either $x + 5 = 0 \Rightarrow x = -5$ or $$x - 2 = 0 \implies x = 2$$ Thus, the required roots are $$x = -5$$ and $x = 2$ **Q. 4.** Solve (using quadratic formula): $$x^2 + 5x + 5 = 0$$ **Sol.** We have: $$x^2 + 5x + 5 = 0$$ Comparing (1) with $ax^2 + bx + c = 0$, we have: $$a = 1$$ $$b = 5$$ $$c = 5$$ $$b^2 - 4ac = (5)^2 - 4 (1) (5)$$ $$= 25 - 20 = 5$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\therefore \qquad x = \frac{-5 \pm \sqrt{5}}{2(1)}$$ $$\Rightarrow \qquad x = \frac{-5 \pm \sqrt{5}}{2}$$ Taking +ve sign, we have: $$x = \frac{-5 + \sqrt{5}}{2}$$ Taking –ve sign, we have: $$x = \frac{-5 - \sqrt{5}}{2}$$ Thus, the required roots are: $$x = \frac{-5 + \sqrt{5}}{2} \text{ and } x = \frac{-5 - \sqrt{5}}{2}$$ Q. 5. Solve for x: $36x^2 - 12ax + (a^2 - b^2) = 0$. **Sol.** We have: Comparing (1) with $Ax^2 + Bx + C = 0$, we have: $$A = 36$$ $$B = -12a$$ $$C = (a^2 - b^2)$$ $$\therefore B^2 - 4AC = [-12a]^2 - 4 (36) [a^2 - b^2]$$ $$= 144 a^2 - 144 (a^2 - b^2)$$ $$= 144 a^2 - 144 a^2 + 144 b^2$$ $$= 144 b^2$$ Since, $$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$ $$\therefore \qquad x = \frac{-(-12a) \pm \sqrt{144 b^2}}{2 (36)}$$ $$\Rightarrow \qquad x = \frac{12a \pm 12b}{72}$$ Taking +ve sign, we have: $$x = \frac{12a + 12b}{72}$$ $$x = \frac{12}{72} [a + b] = \frac{1}{6} (a + b)$$ Taking -ve sign, we get $$x = \frac{12a - 12b}{72}$$ $$\Rightarrow \qquad x = \frac{12}{72}(a-b) = \frac{1}{6}(a-b)$$ Thus, the required roots are: $$x = \frac{1}{6}(a + b)$$ and $x = \frac{1}{6}(a - b)$ **Q. 6.** Find the roots of the quadratic equation $2x^2 - \sqrt{5}x - 2 = 0$, using the quadratic formula. [NCERT Exemplar] **Sol.** Comparing the given equation with the general equation $ax^2 + bx + c = 0$, we have $$\begin{vmatrix} a = 2 \\ b = -\sqrt{5} \\ c = -2 \end{vmatrix} \implies b^2 - 4ac = (-\sqrt{5})^2 - 4 \times 2 \times (-2)$$ $$= 5 + 16$$ $$= 21$$ Now, using the quadratic formula, we have: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow \qquad x = \frac{-(-\sqrt{5}) \pm \sqrt{21}}{2(-2)}$$ $$= \frac{\sqrt{5} \pm 21}{4}$$ Taking the, positive sign, we get $$x = \frac{\sqrt{5} + 21}{4}$$ Taking the negative sign, we get $$x = \frac{\sqrt{5} - 21}{4}$$ $x = \frac{\sqrt{5} + 21}{4}$ and $\frac{\sqrt{5} - 21}{4}$ Thus, **Q. 7.** Solve: $16x^2 - 8a^2 x + (a^4 - b^4) = 0$ for x. $= 64 b^4$ Sol. We have: $$16x^{2} - 8a^{2} x + a^{4} - b^{4} = 0$$...(1) Comparing (1) with $ax^{2} + bx + c = 0$, we get $$a = 16$$ $$b = -8a^{2}$$ $$c = (a^{4} - b^{4})$$ $$\therefore b^{2} - 4ac = [-8a^{2}]^{2} - 4 (16) (a^{4} - b^{4})$$ $$= 64 a^{4} - 64 (a^{4} - b^{4})$$ $$= 64 a^{4} - 64 a^{4} + 64 b^{4}$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\therefore \qquad x = \frac{-\left(-8a^2\right) \pm \sqrt{64 b^4}}{2(16)}$$ $$\Rightarrow \qquad x = \frac{8a^2 \pm 8b^2}{32}$$ $$\Rightarrow \qquad x = \frac{8\left[a^2 \pm b^2\right]}{32} = \frac{a^2 \pm b^2}{4}$$ Now, taking +ve sign, we get $$x = \frac{a^2 + b^2}{4}$$ Taking -ve sign, we get $$x = \frac{a^2 - b^2}{\Delta}$$ Thus, the required roots are: $$x = \frac{a^2 + b^2}{4}$$ and $x = \frac{a^2 - b^2}{4}$ **Q. 8.** Solve for x: $9x^2 - 6ax + a^2 - b^2 = 0$. Sol. We have: $$9x^{2} - 6ax + (a^{2} - b^{2}) = 0$$...(1) Comparing (1) with $ax^{2} + bx + c = 0$, we get $$a = 9, b = -6a \text{ and } c = (a^{2} - b^{2})$$ $$\therefore b^{2} - 4ac = (-6a)^{2} - 4 (9) (a^{2} - b^{2})$$ $$b^{2} - 4ac = (-6a)^{2} - 4(9)(a^{2} - b^{2})$$ $$= 36a^{2} - 36(a^{2} - b^{2})$$ $$= 36a^{2} - 36a^{2} + 36b^{2}$$ $$= 36b^{2} = (6b)^{2}$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\therefore \qquad x = \frac{-\left(-6a\right) \pm \sqrt{\left(6b\right)^2}}{2\left(9\right)}$$ $$\Rightarrow \qquad x = \frac{6a \pm 6b}{18}$$ $$\Rightarrow \qquad x = \frac{6[a \pm b]}{18} = \frac{a \pm b}{3}$$ Taking the +ve sign, we get $$x = \frac{a+b}{3}$$ Taking the -ve sign, we get $$x = \frac{a - b}{3}$$:. The required roots are: $$x = \frac{a+b}{3}$$ and $x = \frac{a-b}{3}$ **Q. 9.** Evaluate $\sqrt{20 + \sqrt{20 + \sqrt{20 +
...}}}$ **Sol.** Let $$\sqrt{20 + \sqrt{20 + \sqrt{20}}} \dots = x$$ The given expression can be written as $$x = \sqrt{20 + \left(\sqrt{20 + \sqrt{20}} \dots\right)}$$ $$x = \sqrt{20 + x}$$ or squaring both side, we have $$x^{2} = (\sqrt{20+x})^{2}$$ $$\Rightarrow x^{2} = 20 + x$$ $$\Rightarrow x^{2} - x - 20 = 0, \text{ where } x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$ Here: $$a = 1, b = -1 \text{ and } c = -20$$ $$\therefore x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \times 1 \times (-20)}}{2(1)}$$ $$= \frac{1 \pm \sqrt{1+80}}{2} = \frac{1 \pm \sqrt{81}}{2} = \frac{1 \pm 9}{2}$$ Since the given expression is positive, :. Rejecting the negative sign, we have: $$x = \frac{1+9}{2} = \frac{10}{2} = 5$$ Thus, $$\sqrt{20 + \sqrt{20 + \sqrt{20 + \dots}}} \dots = 5$$ **Q. 10.** Using quadratic formula, solve the following quadratic equation for x: $$x^2 - 4ax + 4a^2 - b^2 = 0$$ **Sol.** Comparing the given equation with $ax^2 + bx + c = 0$, we have: $$a = 1$$ $$b = -4a$$ $$c = 4a^{2} - b^{2}$$ $$b^{2} - 4ac = [-(4a)]^{2} - 4(1)[4a^{2} - b^{2}]$$ $$= 16a^{2} - 4(4a^{2} - b^{2})$$ $$= 16a^{2} - 16a^{2} + 4b^{2}$$ $$= 4b^{2} = (2b)^{2}$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\therefore \qquad x = \frac{-(-4a) \pm \sqrt{(2b)^2}}{2(1)}$$ $$\Rightarrow \qquad x = \frac{4a \pm 2b}{2}$$ $$\Rightarrow x = \frac{2}{2} [2a \pm b] = 2a \pm b$$ Taking the +ve sign, x = 2a + b Taking the -ve sign, x = 2a - b Thus, the required roots are: $$x = 2a + b \quad \text{and} \quad x = 2a - b$$ **Q. 11.** Using quadratic formula, solve the following quadratic equation for x: $$x^2 - 2ax + (a^2 - b^2) = 0$$ **Sol.** Comparing the given equation with $ax^2 + bx + c = 0$, we have: $$a = 1, b = -2a \text{ and } c = (a^2 - b^2)$$ $$\therefore b^2 - 4ac = (-2a)^2 - 4 (1) (a^2 - b^2)$$ $$= 4a^2 - 4 (a^2 - b^2)$$ $$= 4a^2 - 4a^2 + 4b^2 = 4b^2$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\therefore \qquad x = \frac{-(-2a) \pm \sqrt{4b^2}}{2(1)}$$ $$\Rightarrow \qquad x = \frac{2a \pm 2b}{2}$$ $$\Rightarrow \qquad x = \frac{2}{2} [a \pm b] = a \pm b$$ Taking the +ve sign, we get $$x = a + b$$ Taking the -ve sign, we get $$x = a - b$$ Thus, the required roots are: $$x = a + b$$ and $x = a - b$ **Q. 12.** *Find the roots of the equation:* $$\frac{1}{x+3} + \frac{1}{2x-1} = \frac{11}{7x+9}; \ x \neq -3, \frac{1}{2}, \frac{-9}{7}$$ (CBSE 2009 C) Sol. We have: $$\frac{1}{x+3} + \frac{1}{2x-1} = \frac{11}{7x+9}$$ $$\Rightarrow \frac{2x-1+x+3}{(x+3)(2x-1)} = \frac{11}{7x+9}$$ $$\Rightarrow \frac{3x+2}{2x^2-x+6x-3} = \frac{11}{7x+9}$$ $$\Rightarrow \frac{(3x+2)(7x+9)}{2x^2+5x-3} = 11$$ $$\Rightarrow (3x+2)(7x+9) = 11(2x^2+5x-3)$$ $$\Rightarrow 21x^2+27x+14x+18 = 22x^2+55x-33$$ $$\Rightarrow 21x^2+41x+18 = 22x^2+55x-33$$ $$\Rightarrow (21-22)x^2+(41-55)x+(18+33) = 0$$ $$\Rightarrow -x^2+(-14x)+(51) = 0$$ $$\Rightarrow x^2+14x-51 = 0$$ $$\Rightarrow x^2+17x-3x-51 = 0$$ $$\Rightarrow x^2+17x-3x-51 = 0$$ $$\Rightarrow (x+17)-3(x+17) = 0$$ $$\Rightarrow (x+17)(x-3) = 0$$ Either $x+17=0 \Rightarrow x=-17$ or $x-3=0 \Rightarrow x=3$ Thus, the required roots of the given equation are: 3 and - 17 **Q. 13.** *Find the roots of the equation:* $$\frac{1}{x} - \frac{1}{x-3} = \frac{4}{3}$$; $x \neq 0$, 3 (CBSE 2009 C) Sol. We have: $$\frac{1}{x} - \frac{1}{x - 3} = \frac{4}{3}$$ $$\Rightarrow \frac{(x - 3) - x}{x(x - 3)} = \frac{4}{3}$$ $$\Rightarrow -3 \times 3 = 4 \times (x^2 - 3x)$$ $$\Rightarrow -9 = 4x^2 - 12x$$ $$\Rightarrow 4x^2 - 12x + 9 = 0$$ Comparing (1), with $ax^2 + bx + c = 0$, we get $$a = 4$$ $$b = -12$$ $$c = 9$$ $$\therefore b^2 - 4ac = (-12)^2 - 4 \text{ (4) (9)}$$ $$= 144 - 144 = 0$$ Now, the roots are: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-(-12) \pm 0}{2(4)}$$ $$\Rightarrow x = \frac{12}{8} = \frac{3}{2}$$ Thus, the roots are: $\frac{3}{2}$ and $\frac{3}{2}$ **Q. 14.** Find the roots of the equation: $$\frac{1}{x-2} + \frac{1}{x} = \frac{8}{2x+5}$$; $x \neq 0, 2, \frac{-5}{2}$ (CBSE 2008 C) **Sol.** We have: $$\frac{1}{x-2} + \frac{1}{x} = \frac{8}{2x+5}$$ $$\Rightarrow \frac{x+x-2}{x(x-2)} = \frac{8}{2x+5}$$ $$\Rightarrow \frac{2x-2}{x^2-2x} = \frac{8}{2x+5}$$ $$\Rightarrow (2x-2)(2x+5) = 8(x^2-2x)$$ $$\Rightarrow 4x^2 + 10x - 4x - 10 = 8x^2 - 16x$$ $$\Rightarrow -4x^2 + 22x - 10 = 0$$ $$\Rightarrow 2x^2 - 11x + 5 = 0$$...(1) Comparing (1) with $ax^2 + bx + c = 0$, we have: $$a = 2$$ $$b = -11$$ $$c = 5$$ $$b^2 - 4ac = (-11)^2 - 4 (2) (5)$$ $$= 121 - 40 = 81$$ Now, the roots are given by $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-(-11) \pm \sqrt{81}}{2(2)}$$ $$= \frac{11 \pm 9}{4}$$ Taking the +ve sign, $$x = \frac{11+9}{4} = \frac{20}{4} = 5$$ Taking the -ve sign, $$x = \frac{11-9}{4} = \frac{2}{4} = \frac{1}{2}$$ Thus, the required roots are: 5 and $\frac{1}{2}$. **Q. 15.** Find the roots of the following equation: $$\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}; \ x = -4, 7$$ (CBSE 2012) Sol. We have: $$\frac{1}{x+4} - \frac{1}{x-7} = \frac{11}{30}$$ $$\Rightarrow \frac{(x-7)-(x+4)}{(x+4)(x-7)} = \frac{11}{30}$$ $$\Rightarrow \frac{x-7-x-4}{x^2-3x-28} = \frac{11}{30}$$ $$\Rightarrow -11 \times 30 = 11 \times (x^2-3x-28)$$ $$\Rightarrow -30 = x^2-3x-28$$ $$\Rightarrow x^2-3x-28+30=0$$ $$\Rightarrow x^2-3x+2=0$$ $$\Rightarrow x^2-2x-x+2=0$$ $$\Rightarrow x(x-2)-1(x-2)=0$$ $$\Rightarrow (x-1)(x-2)=0$$ Either $$x-1=0 \Rightarrow x=1$$ or $$x-2=0 \Rightarrow x=2$$ Thus, the required roots are: 1 and 2. **Q. 16.** If α and β are roots of the equation $x^2 - 1 = 0$, form an equation whose roots are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$. **Sol.** α and β are roots of $x^2 - 1 = 0$ and $x^2 - 1 = 0$ can be written as $x^2 + 0x - 1 = 0$ where a = 1, b = 0 and c = -1. $$\therefore \text{ Sum of roots} = \frac{-b}{a} = \frac{0}{1} = 0$$ $$\Rightarrow \qquad \alpha + \beta = 0$$ Also, product of roots = $\frac{c}{a} = \frac{-1}{1} = -1$ $$\Rightarrow \qquad \alpha\beta = -1$$ Now, the roots of the new equation are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$ \therefore Sum of the roots of the new equation = $\frac{2\alpha}{\beta} + \frac{2\beta}{\alpha}$ $$= \frac{2\alpha^2 + 2\beta^2}{\alpha\beta} = \frac{2(\alpha^2 + \beta^2)}{\alpha\beta}$$ $$= \frac{2[(\alpha + \beta)^2 - 2\alpha\beta]}{\alpha\beta}$$ $$= 2\left[\frac{(0)^2 - 2(-1)}{(-1)}\right]$$ $$= 2\left[\frac{0 + 2}{(-1)}\right]$$ $$= 2 \times (-2) = -4$$ Product of the roots of the new equation = $\frac{2\alpha}{\beta} \times \frac{2\beta}{\alpha} = 4\frac{\alpha\beta}{\alpha\beta} = 4$ Since, a quadratic equation is given by $$x^2 - {\text{Sum of the} \atop \text{roots}} x + {\text{Product} \atop \text{of the roots}} = 0$$:. The required quadratic equation is or $$x^{2} - (-4) x + 4 = 0$$ $$x^{2} + 4x + 4 = 0$$ Remember $$\alpha^{2} + \beta^{2} + 2\alpha\beta = (\alpha + \beta)^{2}$$ $$\Rightarrow \qquad \alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$ ## **III. LONG ANSWER TYPE QUESTIONS** **Q. 1.** A two-digit number is 5 times the sum of its digits and is also equal to 5 more than twice the product of its digits. Find the number. **Sol.** Let the tens digit = x And the ones digit = y \therefore The number = 10x + y According to the conditions, [Multiplying both sides by 4] From (1), we have $$10x + y = 5x + 5y$$ $$\Rightarrow 10x + y - 5x - 5y = 0$$ $$\Rightarrow$$ $5x - 4y = 0$ $$\Rightarrow \qquad 5x = 4y \quad \text{or} \quad y = \frac{5}{4}x$$ Substituting $$y = \frac{5}{4}x$$ in (2), we get $$10x + \frac{5x}{4} = \frac{5x^2}{2} + 5$$ $$\Rightarrow \qquad 40x + 5x = 10x^2 + 20$$ $$\Rightarrow \qquad 45x = 10x^2 + 20$$ $$\Rightarrow 10x^2 - 45x - 20 = 0$$ $$\Rightarrow \qquad 2x^2 - 9x - 4 = 0$$ $$\Rightarrow 2x^2 - 8x - x + 4 = 0$$ $$\Rightarrow$$ 2x (x - 4) - 1 (x - 4) = 0 $$\Rightarrow$$ $(x-4)(2x-1)=0$ Either $$x - 4 = 0 \implies x = 4$$ or $$2x - 1 = 0 \implies x = \frac{1}{2}$$ But a digit cannot be a fraction, $$\therefore$$ $x = 4 \Rightarrow$ The tens digit = 4 Now, the ones digit $$y = \frac{5 \times 4}{4} = 5$$ $$\therefore \qquad x = 4 \quad \text{and} \quad y = 5$$ $$\therefore$$ The required number = $10 \times 4 + 5$ $$= 40 + 5 = 45$$ **Q. 2.** The denominator is one more than twice the numerator. If the sum of the fraction and its reciprocal is $2\frac{16}{21}$, find the fraction. **Sol.** Let the numerator be x $$\therefore \qquad \text{Denominator} = (2x + 1)$$ $$\therefore \qquad \text{Fraction} = \frac{x}{2x+1}$$ Reciprocal of the fraction = $\frac{2x+1}{x}$ According to the condition, $$\frac{x}{2x+1} + \frac{2x+1}{x} = 2\frac{16}{21}$$ $$\Rightarrow \frac{x \times x + (2x+1)(2x+1)}{x(2x+1)} = \frac{58}{21}$$ $$\Rightarrow \frac{x^2 + (2x+1)^2}{2x^2 + x} = \frac{58}{21}$$ $$\Rightarrow \frac{x^2 + 4x^2 + 4x + 1}{2x^2 + x} = \frac{58}{21}$$ $$\Rightarrow \frac{5x^2 + 4x + 1}{2x^2 + x} = \frac{58}{21}$$ $$\Rightarrow 21 (5x^2 + 4x + 1) = 58 (2x^2 + x)$$ $$\Rightarrow 105x^2 + 84x + 21 = 116x^2 + 58x$$ $$\Rightarrow 105x^2 - 116x^2 + 84x - 58x + 21 = 0$$ $$\Rightarrow -11x^2 + 26x + 21 = 0$$ Comparing (1) with $ax^2 + bx + c = 0$, we have: $11x^2 - 26x - 21 = 0$ $$a = 11$$ $$b = -26$$ $$c = -21$$ $$b^2 - 4ac = (-26)^2 - 4 \times 11 (-21)$$ $$= 676 + 924 = 1600$$ Since, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$...(1) $$\therefore x = \frac{-(-26) \pm \sqrt{1600}}{2(11)}$$ $$\Rightarrow \qquad x = \frac{26 \pm 40}{22}$$ Taking the +ve sign, $$x = \frac{26 + 40}{22} = \frac{66}{22} = 3$$ Taking the -ve sign $$x = \frac{26 - 40}{22} = \frac{-14}{22} = \frac{-7}{11}$$ But the numerator cannot be $\frac{-7}{11}$ $$\therefore$$ $x = 3 \Rightarrow$ The numerator = 3 $$\therefore$$ Denominator = 2 (3) + 1 = 7 Thus, the required fraction = $\frac{3}{7}$ **Q. 3.** The sum of a number and its reciprocal is $\frac{10}{3}$. Find the number. **Sol.** Let the required number = x $$\therefore$$ Its reciprocal = $\frac{1}{x}$ According to the condition, we have: $$[The number] + \begin{bmatrix} Reciprocal \text{ of the number}
\end{bmatrix} = \frac{10}{3}$$ $$\Rightarrow x + \frac{1}{x} = \frac{10}{3}$$ $$\Rightarrow \frac{x^2 + 1}{x} = \frac{10}{3}$$ $$\Rightarrow 3(x^2 + 1) = 10x$$ $$\Rightarrow 3x^2 + 3 - 10x = 0$$ $$\Rightarrow 3x^2 - 10x + 3 = 0$$ $$\Rightarrow 3x^2 - 9x - x + 3 = 0$$ $$\Rightarrow 3x(x - 3) - 1(x - 3) = 0$$ $$\Rightarrow (x - 3)(3x - 1) = 0$$ Either $x - 3 = 0 \Rightarrow x = 3$ or $3x - 1 = 0 \Rightarrow x = \frac{1}{3}$ Thus, the required number is 3 or $\frac{1}{3}$. - **Q. 4.** The hypotenuse of a right triangle is $3\sqrt{10}$ cm. If the smaller side is tripled and the longer side doubled, new hypotenuse will be $9\sqrt{5}$ cm. How long are the sides of the triangle? - **Sol.** Let the smaller side = x $$\therefore \text{ Longer side} = \sqrt{(\text{Hypotenuse})^2 - (\text{smaller side})^2}$$ $$= \sqrt{(3\sqrt{10})^2 - x^2}$$ $$= \sqrt{9 \times 10 - x^2}$$ $$= \sqrt{90 - x^2}$$ According to the condition, we have $[3 (Smaller side)]^2 + [2 (Longer side)]^2 = [New Hypotenuse]^2$ $$\Rightarrow \left[3(x)\right]^{2} + \left[2\sqrt{(90 - x^{2})}\right]^{2} = \left[9\sqrt{5}\right]^{2}$$ $$\Rightarrow 9x^{2} + 4(90 - x^{2}) = 81 \times 5$$ $$\Rightarrow 9x^{2} + 360 - 4x^{2} = 405$$ $$\Rightarrow 5x^{2} = 405 - 360$$ $$\Rightarrow 5x^{2} = 45$$ $$\Rightarrow x^{2} = \frac{45}{5} = 9$$ $$\Rightarrow x = \pm\sqrt{9} = \pm 3$$ But x = -3 is not required, because the side of a triangle cannot be negative. $$\therefore \qquad x = 3 \implies \text{Smaller side} = 3 \text{ cm}$$ $$\therefore \text{ Longer side } = \sqrt{90 - 3^2}$$ $$= \sqrt{90 - 9}$$ $$= \sqrt{81} = 9 \text{ cm}$$ Thus, the required sides of the triangle are 3 cm and 9 cm. - **Q. 5.** A motor-boat goes 10 km upstream and returns back to the starting point in 55 minutes. If the speed of the motor boat in still water is 22 km/hr, find the speed of the current. - **Sol.** Let the speed of the current = x km/hr $$\therefore$$ The speed downstream = $(22 + x) \text{ km/hr}$ The speed upstream = $$(22 - x) \text{ km/hr}$$ Since, Time = $$\frac{\text{Distance}}{\text{Speed}}$$ ∴ Time for going 10 km downstream = $$\left(\frac{10}{22+x}\right)$$ hrs Time for returning back 10 km upstream = $$\left(\frac{10}{22 - x}\right)$$ hours According to the condition, $$\frac{10}{22+x} + \frac{10}{22-x} = \frac{55}{60}$$ $$\Rightarrow 10 \left[\frac{1}{22+x} + \frac{1}{22-x} \right] = \frac{11}{12} \qquad [\because 55 \text{ minutes} = \frac{55}{60} \text{ hours}]$$ $$\Rightarrow 10 \times 12 \left[\frac{22+x+22-x}{(22+x)(22-x)} \right] = 11$$ $$\Rightarrow 120 \left[\frac{44}{484-x^2} \right] = 11$$ $$\Rightarrow 11 (484-x^2) = 120 \times 44$$ $$\Rightarrow 5324 - 11x^2 = 5280$$ $$\Rightarrow 11x^2 = 5324 - 5280 = 44$$ $$\Rightarrow x^2 = \frac{44}{11} = 4$$ $$\Rightarrow x = \pm 2$$ But speed of the current cannot be negative, $$\therefore$$ $x = 2$ \Rightarrow Speed of current = 2 km/hr - **Q. 6.** A motor boat whose speed in still water is 5 km/hr, takes 1 hour more to go 12 km upstream than to return downstream to the same spot. Find the speed of the stream. (AI CBSE 2009 C) - **Sol.** Let the speed of the stream be x km/hr - \therefore Downstream speed of the motor boat = (x + 5) km/hr - \Rightarrow Time taken to go 12 km upstream = $\frac{12}{5-x}$ hours Time taken to return 12 km downstream = $\frac{12}{5+x}$ hours According to the condition $$\frac{12}{5-x} - \frac{12}{5+x} = 1$$ $$\therefore 12 (5+x) - 12 (5-x) = 1 (5-x) (5+x)$$ $$\Rightarrow 60 + 12x - 60 + 12x = 25 - x^2$$ $$\Rightarrow 24x = 25 - x^2$$ $$\Rightarrow x^2 + 24x - 25 = 0$$ $$\Rightarrow x^2 + 25x - x - 25 = 0$$ $$\Rightarrow x (x + 25) - 1 (x + 25) = 0$$ $$\Rightarrow (x - 1) (x - 25) = 0$$ Either $x - 1 = 0 \Rightarrow x = 1$ or $x + 25 = 0 \Rightarrow x = -25$ But x = -25 is not admissible, because the speed of the stream cannot be negative. $$\therefore$$ $x = 1$ \Rightarrow speed of the stream = 1 km/hr. - **Q. 7.** Sum of the areas of two squares is 260 m^2 . If the difference of their perimeters is 24 m, then find the sides of the two squares. (AI CBSE 2009 C) - **Sol.** Let the side of one of the squares be 'x' metres - \therefore Perimeter of square-I = $4 \times x$ metres = 4x metres - \therefore Perimeter of square-II = (24 + 4x) metres - \therefore Side of the square-II = $\frac{1}{4}$ (24 + 4x) metres = (6 + x) metres Now, according to the condition, we have: $$x^{2} + (6 + x)^{2} = 260$$ $$\Rightarrow x^{2} + 36 + x^{2} + 12x - 260 = 0$$ $$\Rightarrow 2x^{2} + 12x - 224 = 0$$ $$\Rightarrow x^{2} + 6x - 112 = 0 \qquad ...(1)$$ Comparing (1) with $ax^2 + bx + c = 0$, we get, comparing (1) with $$ax^2 + bx + c = a = 1$$ $$b = 6$$ $$c = -112$$ $$b^2 - 4ac = (6)^2 - 4 (1) (-112)$$ $$= 36 + 448 = 484$$ $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-6 \pm \sqrt{484}}{2(1)}$$ $$= \frac{-6 \pm 22}{2}$$ Taking +ve sign, we have $$x = \frac{-6 + 22}{2} = \frac{16}{2} = 8$$ Taking -ve sign, we have $$x = \frac{-6 - 22}{2} = \frac{-28}{2} = -14$$ But x = -14 is not required, as the length of a side cannot be negative. $$\therefore$$ $x = 8$ $$\Rightarrow$$ Side of square-I = 8 m - \Rightarrow Side of square-II = 6 + 8 m = **14 m**. - **Q. 8.** The age of a father is twice the square of the age his son. Eight years hence, the age of the father will be 4 years more than three times the age of his son. Find their present ages. (AI CBSE 2009 C) **Sol.** Let the present of son be 'x' years. \therefore Father's present age = $2x^2$ years 8 years hence: Age of son = $$(x + 8)$$ years Age of father = $(2x^2 + 8)$ years #### According to the condition: $$(2x^{2} + 8) = 3 (x + 8) + 4$$ $$\Rightarrow 2x^{2} + 8 - 3x - 24 - 4 = 0$$ $$\Rightarrow 2x^{2} - 3x + 8 - 28 = 0$$ $$\Rightarrow 2x^{2} - 3x - 20 = 0$$...(1) Comparing (1) with $ax^2 + bx + c = 0$, we get Comparing (1) with $$ax^2 + bx + c = 0$$, we $$a = 2$$ $$b = -3$$ $$c = -20$$ $$b^2 - 4ac = (-3)^2 - 4 (2) (-20)$$ $$= 9 + 160 = 169$$ Now, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$x = \frac{-(-3) \pm \sqrt{169}}{2(2)} = \frac{3 \pm 13}{4}$$ Taking +ve sign, $$x = \frac{3+13}{4} = \frac{16}{4} = 4$$ Taking -ve sign, $$x = \frac{3-13}{4} = \frac{-10}{4} = \frac{-5}{2}$$ But $x = \frac{-5}{2}$ is not required, as the age cannot be negative. $$\therefore$$ $x = 4$ \Rightarrow Present age of son = 4 years Present age of father = $2 \times 4^2 = 32$ years. - **Q. 9.** The diagonal of a rectangular field is 60 m more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field. (CBSE 2009 C) - **Sol.** See Q-6 of Textbook Exercise 4.3. - **Q. 10.** A motor boat whose speed in still water is 16 km/h, takes 2 hours more to go 60 km upstream than to return to the same spot. Find the speed of the stream. (CBSE 2009 C) - **Sol.** Let the speed of the stream = x km/hr For the motor boat, we have: \therefore Downstream speed = (16 + x) km/hr Upstream speed = (16 - x) km/hr For going 60 km: Downstream = $$\frac{60}{16 + x}$$ hours Upstream = $\frac{60}{16 - x}$ hours According to the condition: $$\frac{60}{16-x} - \frac{60}{16+x} = 2$$ $$\Rightarrow 60 (16 + x) - 60 (16 - x) = 2 (16 - x) (16 + x)$$ $$\Rightarrow 960 + 60x - 960 + 60x = 2 (256 - x^{2})$$ $$\Rightarrow 2x^{2} + 120x = 2 \times 256 - 2x^{2}$$ $$\Rightarrow x^{2} + 60x = 256$$ $$\Rightarrow x^{2} + 60x - 250 = 0 \qquad ...(1)$$ Comparing (1) with $xx^{2} + bx + c = 0$ Comparing (1) with $ax^2 + bx + c = 0$, $$a = 1$$ $$b = 60$$ $$c = -256$$ $$b^2 - 4ac = (60)^2 - 4 (1) (-256)$$ $$= 3600 + 1024 = 4624$$ $$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$\Rightarrow x = \frac{-60 \pm \sqrt{4624}}{2(1)}$$ $$\Rightarrow x = \frac{-60 \pm 68}{2}$$ Taking +ve sign $$x = \frac{-60 + 68}{2} = \frac{8}{2} = 4$$ Taking -ve sign $$x = \frac{-60 - 68}{2} = \frac{-128}{2} = -64$$ Since, the speed of a stream cannot be negative, $$\therefore$$ $x = -64$ is not admissible $$\therefore x = 4$$ \Rightarrow speed of the stream = 4 km/hr. - Q. 11. A train travels 288 km at a uniform speed. If the speed had been 4 km/hr more, it would have taken 1 hour less for the same journey. Find the speed of the train. (CBSE 2009 C) - **Sol.** Let the speed of the train be x km/hr : Total distance travelled = 288 km $$\therefore$$ Time taken = $\frac{288}{x}$ hours In the other case, Speed of the train = (x + 4) km/hr $$\therefore \qquad \text{Time taken} = \frac{288}{x+4} \text{ hours}$$ According to the condition, $$\frac{288}{x} - \frac{288}{x+4} = 1$$ $$\Rightarrow \frac{288(x+4)-288x}{x(x+4)} = 1$$ ⇒ $$288x + 1152 - 288x = 1$$ (x) (x + 4) ⇒ $288x + 1152 - 288x = x^2 + 4x$ ⇒ $1152 = x^2 + 4x$ ⇒ $x^2 + 4x - 1152 = 0$ Comparing (1) with $ax^2 + bx + c = 0$, $a = 1$ $b = 4$ $c = -1152$ ∴ $b^2 - 4ac = (4)^2 - 4$ (1) (-1152) $= 16 + 4608$ ⇒ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ⇒ $x = \frac{-(4) \pm \sqrt{4608}}{2(1)} = \frac{-4 \pm 68}{2}$ Taking +ve sign, $$x = \frac{-4+68}{2} = \frac{64}{2} = 32$$ Taking -ve sign, $$x = \frac{-4-68}{2} = \frac{-72}{2} = -36$$: speed cannot be negative, $$\therefore x \neq -36$$ $$\therefore$$ $x = 32$ \Rightarrow speed of the train = 32 km/hr. **Q. 12.** A train travels at a certain average speed for a distance of 63 km and then travels a distance of 72 km at an average speed of 6 km/hr more than its original speed of. If takes 3 hours to complete the total journey, what is its original average speed? [NCERT Exemplar] ...(1) **Sol.** Let the original average speed = x km/hr $$\therefore \text{ Time taken to cover 72 km} = \frac{72}{x+6} \text{hours}$$ Time taken to cover 63 km = $\frac{63}{x}$ hours Since, total time = 3 hours $$\therefore \frac{72}{x+6} + \frac{63}{x} = 3$$ $$\Rightarrow \frac{1}{9} \left[\frac{72}{x+6} + \frac{63}{x} \right] = \frac{1}{9} \times 3$$ $$\Rightarrow \frac{8}{x+6} + \frac{7}{x} = \frac{1}{3}$$ $$\Rightarrow \frac{8x+7(x+6)}{x(x+6)} = \frac{1}{3}$$ $$\Rightarrow 8x + 7x + 42 = \frac{x^2 + 6x}{3}$$ $$\Rightarrow 15x + 42 = \frac{x^2 +
6x}{3}$$ $$\Rightarrow 3[15x + 42] = x^2 + 6x$$ $$\Rightarrow 45x + 126 - x^2 - 6x = 0$$ $$\Rightarrow x^2 - 39x - 126 = 0$$ $$\Rightarrow x^2 - 42x + 3x - 126 = 0$$ $$\Rightarrow x(x - 42) + 3(x - 42) = 0$$ $$\Rightarrow (x + 3)(x - 42) = 0$$ Either $$x + 3 = 0 \Rightarrow x = -3$$ or $$x - 42 = 0 \Rightarrow x = 42$$ Since, speed cannot be negative, $$\therefore$$ $x = -3$ is not desired. Thus, the original speed of the train is 42 km/hr. **Q. 13.** If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$ and the quadratic equation $p(x^2 + x) + k = 0$ has equal roots, then find the values of p and k. (AI CBSE 2009) **Sol.** Since $$-5$$ is a root of $2x^2 + px - 15 = 0$, \therefore Substituting x = -5 in the given equation, we get $$2 (-5)^{2} + p (-5) - 15 = 0$$ $$\Rightarrow 2 (25) + (-5p) - 15 = 0$$ $$\Rightarrow 50 - 5p - 15 = 0$$ $$\Rightarrow -5p + 35 = 0$$ $$\Rightarrow -5p = -35$$ $$\Rightarrow p = \frac{-35}{-5} = 7$$ Now, comparing the another quadratic equation $p(x^2 + x) + k = 0$, *i.e.*, $px^2 + px + k = 0$ with $ax^2 + bx + c = 0$, we have: $$a = p$$ $$b = p$$ $$c = k$$ $$b^{2} - 4ac = p^{2} - 4(p)(k)$$ $$= p^{2} - 4pk$$ Since $p(x^2 - x) + k = 0$ has equal roots, $$p^{2} - 4pk = 0$$ $$\Rightarrow (7)^{2} - 4(7)k = 0$$ $$\Rightarrow 49 - 28k = 0$$ $$\Rightarrow k = \frac{-49}{-28} = \frac{7}{4}$$ Thus, the required values of $$p = 7$$ and $k = \frac{7}{4}$. |::p=7 - **Q. 14.** In a class test, the sum of Gagan's marks in Mathematics and English is 45. If he had 1 more mark in Mathematics and 1 less in English, the product of marks would have been 500. Find the original marks obtained by Gagan in Mathematics and English separately. (AI CBSE 2008 C) - **Sol.** Let Gagan's marks in maths = x and Marks in English = $$(45 - x)$$:. According to the condition, $$(x + 1) \times (45 - x + 1) = 500$$ $$\Rightarrow (x + 1) \times (44 - x) = 500$$ $$\Rightarrow 44x - x^2 + 44 - x = 500$$ $$\Rightarrow -x^2 + 44x - 456 - x = 0$$ $$\Rightarrow x^2 - 43x + 456 = 0$$ $$\Rightarrow x^2 - 19x - 24x + 456 = 0$$ $$\Rightarrow x (x - 19) - 24 (x - 19) = 0$$ $$\Rightarrow (x - 19) (x - 24) = 0$$ Either $x - 19 = 0 \Rightarrow x = 19$ or $x - 24 = 0 \Rightarrow x = 24$ When $x = 19$, then $45 - 19 = 26$ When $x = 24$, then $45 - 24 = 21$ ∴ Gagan's marks in Maths = 19 and in English = 26 Gagan's marks in Maths = 24 and in English = 21. - **Q. 15.** The sum of areas of two squares is 640 m^2 . If the difference of their perimeters is 64 m, find the sides of two squares. (CBSE 2008 C) - **Sol.** Let the side of square I be x metres. - : Perimeter of square I = 4x metres - \Rightarrow Perimeter of square II = (64 + 4x) m $$\therefore \qquad \text{Side of square II} = \frac{1}{4} (64 + 4x) \text{ m}$$ $$= (16 + x) \text{ m}$$ Now Area of square $I = x \times x = x^2$ Area of square II = $$(16 + x) \times (16 + x) = (16 + x)^2$$ = $256 + x^2 + 32x$ According to the condition, $$\begin{bmatrix} \text{Area of } \\ \text{square I} \end{bmatrix} + \begin{bmatrix} \text{Area of the} \\ \text{square II} \end{bmatrix} = 640$$ $$\Rightarrow \quad x^2 + [256 + x^2 + 32x] = 640$$ $$\Rightarrow \quad x^2 + x^2 + 32x + 256 - 640 = 0$$ $$\Rightarrow \quad 2x^2 + 32x - 384 = 0$$ $$\Rightarrow \quad x^2 + 16x - 192 = 0$$ $$\Rightarrow \quad x^2 + 24x - 8x - 192 = 0$$ $$\Rightarrow \quad x (x + 24) - 8 (x + 24) = 0$$ $$\Rightarrow \quad \text{and } 24 \times 8 = 192$$ $$\Rightarrow (x + 24) (x - 8) = 0$$ Either $x + 24 = 0 \Rightarrow x = -24$ or $$x - 8 = 0 \implies x = + 8$$: side of a square cannot be negative, - \therefore Rejecting x = -24, we have x = 8 - \Rightarrow Side of smaller square = 8 m Side of larger square = 8 + 16 m = 24 m. - **Q. 16.** In a class test, the sum of Kamal's marks in Mathematics and English is 40. Had he got 3 marks more in Mathematics and 4 marks less in English, the product of his marks would have been 360. Find his marks in two subjects separately. (CBSE 2012) - **Sol.** Let Kamal's marks in Maths = x $$\therefore$$ His marks in English = $(40 - x)$ According to the condition, $$(x + 3) [40 - x - 4] = 360$$ $$\Rightarrow (x + 3) (36 - x) = 360$$ $$\Rightarrow 36x - x^2 + 108 - 3x - 360 = 0$$ $$\Rightarrow -x^2 + 33x - 252 = 0$$ $$\Rightarrow x^2 - 33x + 252 = 0$$ $$\Rightarrow x^2 - 21x - 12x + 252 = 0$$ $$\Rightarrow x (x - 21) - 12 (x - 21) = 0$$ $$\Rightarrow (x - 21) (x - 12) = 0$$ Either $$(x - 21) = 0 \Rightarrow x = 21$$ or $$(x - 12) = 0 \Rightarrow x = 12$$ For x = 21, Marks of Kamal in Maths $$= 21$$ in English = $$40 - 21 = 19$$ For x = 12, Marks of Kamal in Maths $$= 12$$ in English = $$40 - 12 = 28$$. **Q. 17.** Find the value of p for which the quadratic equation $4x^2 + px + 3 = 0$ has equal roots. (Al CBSE 2014) For equal roots, $$b^2 - 4ac = 0$$ $$p^2 - 4(4) (3) = 0 \text{ or } p^2 - 48 = 0 \Rightarrow p = \pm \sqrt{48} = \pm 4\sqrt{3}$$ **Q. 18.** Solve the quadratic equation $$2x^2 + ax - a^2 = 0$$ [Al CBSE (Delhi) 2014] Sol. $$2x^{2} + ax - a^{2} = 0$$ $$\Rightarrow 2x^{2} + 2ax - ax - a^{2} = 0$$ $$\Rightarrow 2x[x + a] - a[x + a] = 0$$ $$\Rightarrow (x + a) (2x - a) = 0$$ $$x = -a \text{ or } x = \frac{a}{2}$$ splitting 'ax' into '2ax' and '-ax' #### IV. HOTS QUESTIONS **Q. 1.** Had Ravita scored 10 more marks in her Mathematics test out of 30 marks, 9 times these marks would have been the square of her actual marks. How many marks did she get in the test? [NCERT Exemplar] **Sol.** Let actual marks be x .. $$9 \times [\text{Actual marks} + 10] = [\text{Square of actual marks}]$$ or $9 \times (x + 10) = x^2$ $\Rightarrow 9x + 90 = x^2$ $\Rightarrow x^2 - 9x - 90 = 0$ $\Rightarrow x^2 - 15x + 6x - 90 = 0$ $\Rightarrow x(x - 15) + 6(x - 15) = 0$ $\Rightarrow (x + 6)(x - 15) = 0$ Either $x + 6 = 0 \Rightarrow x = -6$ or $x - 15 = 0 \Rightarrow x = 15$ But marks cannot be less than 0. \therefore x = -6 is not desired. Thus, Ravita got 15 marks in her Mathematics test. - **Q. 2.** A motor boat whose speed is 18 km/h in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream. (AI CBSE 2008) - **Sol.** Let the speed of the stream = x km/hr - ∴ speed of the motor boat: upstream = $$(18 - x) \text{ km/hr}$$ downstream = $(18 + x) \text{ km/hr}$ \Rightarrow Time taken by the motor boat in going: 24 km downstream = $$\frac{24}{18 + x}$$ hours \therefore Time = $\frac{Distance}{Speed}$ 24 km upstream = $\frac{20}{18 - x}$ hours According to the condition: $$\frac{24}{18-x} - \frac{24}{18+x} = 1$$ ⇒ 24 × (18 + x) - 2 (18 - x) = 1 (18 - x) (18 + x) ⇒ 24 [18 + x - 18 + x] = 18^2 - x^2 ⇒ 24 [2x] = 324 - x^2 ⇒ 48x = 324 - x^2 ⇒ x^2 + 48x - 324 = 0 ⇒ x^2 + 54x - 6x - 324 = 0 ⇒ x (x + 54) - 6 (x + 54) = 0 ⇒ (x - 6) (x + 54) = 0 Either $x - 6 = 0 \Rightarrow x = 6$ or $x + 54 = 0 \Rightarrow x = -54$ But speed cannot be negative ∴ Rejecting $x = -54$, we have $x = 6 \Rightarrow$ Speed of the boat = 6 km/hr. - **Q. 3.** In a class test, the sum of marks obtained by P in Mathematics and Science is 28. Had he got 3 more marks in Mathematics and 4 marks less in Science, the product of marks obtained in the two subjects would have been 180? Find the marks obtained in two subjects separately. (CBSE 2008) - **Sol.** Let marks obtained by P in Maths be 'x'. \therefore His marks in Science = (28 - x) According to the condition, $$(x + 3) (28 - x - 4) = 180$$ $\Rightarrow (x + 3) (-x + 24) = 180$ $\Rightarrow 24x - x^2 + 72 - 3x = 180$ $\Rightarrow -x^2 + 21x + 72 - 180 = 0$ $\Rightarrow -x^2 + 21x - 108 = 0$ $\Rightarrow x^2 - 21x + 108 = 0$ $\Rightarrow x^2 - 12x - 9x + 108 = 0$ $\Rightarrow x(x - 12x) - 9(x - 12) = 0$ $\Rightarrow (x - 9) (x - 12) = 0$ $\Rightarrow (x - 9) (x - 12) = 0$ Either $x - 9 = 0 \Rightarrow x = 9$ or $x - 12 = 0 \Rightarrow x = 12$ When $x = 9$ then $28 - x = 28 - 9 = 19$ When $x = 12$ then $28 - x = 28 - 12 = 16$ Thus P's marks in Maths = 9 and Science = 19 Thus I's marks in waths - 9 and Science - I Эr P's marks in Maths = 12 and Science = 16. **Q. 4.** Solve for x: $$\sqrt{3}x^2 - 2\sqrt{2x} - 2\sqrt{3} = 0$$ [CBSE (Foreign) 2014] Hint: $$\sqrt{3}x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0$$, we have $a = \sqrt{3}$, $b = (-2\sqrt{2})$ and $c = (-2\sqrt{3})$ $$\therefore b^2 - 4ac = (-2\sqrt{2})^2 - 4(\sqrt{3})(-2\sqrt{3}) = \sqrt{32}$$ Using Quadratic formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ we get, $x = \sqrt{6}$ **Q.5.** Solve for x: $$x^2 + 5\sqrt{5}x - 70 = 0$$ $$a = 1, b = 5\sqrt{5}$$ and $c = -70$ $$\Rightarrow$$ $b^2 - 4ac = (5\sqrt{5})^2 - 4(1)(-70) = 9\sqrt{5}$ Now use quad. formula to get $x = 2\sqrt{5}$, $-7\sqrt{x}$ **Q. 6.** At 't' minutes past 2 pm, the time needed by the minute hand of a clock to show 3 pm was found to be 3 minutes less than $\frac{t^2}{4}$ minutes. Find 't'. Sol. For a minute-hand time needed to show 2 pm to 3 pm is '60' minutes. It has already covered 't' minutes. \therefore Time required by the minute-hand to reach to 12 (at 3 pm) = (60 - t) minutes. $$\therefore \qquad \left(\frac{t^2}{4} - 3\right) = (60 - t)$$ $$\Rightarrow \qquad \frac{t^2}{4} + t - 63 = 0$$ $$t^2 + 4t - 252 = 0$$ Solving, we get, $$t = 14 \text{ or } - 18$$ But t = -18 is not desirable (being negative) Thus, t = 14 minutes. **Q.7.** A train, travelling at a uniform speed for 360 km, would have taken 48 minutes less to travel the same distance if its speed were 5 km/hr more. Find the original speed of the train. [NCERT Exemplar] **Sol.** Let the original speed be x km/hr ∴Original time taken = $$\frac{360}{x}$$ hours New speed = (x + 5) km/hr $$\therefore \text{ New time} = \frac{360}{x+5} \text{ km / hr}$$ According to the condition, $$\frac{360}{x} = \frac{360}{x+5} + \frac{48}{60}$$ $$\Rightarrow 360 \left[\frac{x+5-x}{x(x+5)} \right] = \frac{4}{5}$$ $$\Rightarrow 360 \left[\frac{5}{x^2 + 5x} \right] = \frac{4}{5} \Rightarrow x^2 + 5x - 2250 = 0$$ Solving for x, we get x = -50 or 45 Speed cannot be negative \therefore Rejecting x = -50, we have x = 45 Thus, the
original speed of the train = 45 km/hr. **Q.8.** If the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$ are equal, then prove that 2b = a + c *Hint:* For equal roots $$D = 0$$ Here, $D = (c - a)^2 - 4(b - c)$ ($a - b$) ∴ $(c - a)^2 - 4(b - c)(a - b) = 0$ ⇒ $c^2 + a^2 + 4b^2 - 2ac - 4ab + 4ac - 4bc = 0$ ⇒ $(c + a - 2b)^2 = 0$ ⇒ $(c + a - 2b) = 0$ ⇒ $c + a = 2b$ (Hence Proved) ## **Q.9.** *If the roots of the equations* $$ax^2 + 2bx + c = 0$$ and $bx^2 - 2\sqrt{ac} x + b = 0$ are simultanously real then prove that $b^2 = 4ac$ Hint: Let $$D_1$$ and D_2 be the discriminants ∴ $D_1 \ge 0$ and $D_2 \ge b^2$ ⇒ $4b^2 - 4ac \ge 0$ and $4ac - 4b^2 \ge 0$ ⇒ $b^2 \ge ac$ and $ac \ge b^2$ $b^2 = ac$ ## **Q. 10.** *If the roots of the equation* $$(c^2 - ab)x^2 - 2(a^2 - bc)x + b^2 - ac = 0$$ are equal, then prove that either $a = 0$ or $a^3 + b^3 + c^3 = 3abc$ Hint: $$D = b^{2} - 4ac$$ $$= [-2(a^{2} - bc)]^{2} - 4(a^{2} - ab)(b^{2} - ac)$$ $$= 4a(a^{3} + b^{3} + c^{3} - 3abc)$$ For equal roots, $$D = 0$$ ∴ $$4a(a^{3} + b^{3} + c^{3} - 3abc) = 0$$ $$\Rightarrow a = 0 \text{ or } a^{3} + b^{3} + c^{3} = 3abc$$ # **TEST YOUR SKILLS** **1.** A natural number, when increased by 12, equals 160 times its reciprocal. Find the number. [NCERT Exemplar] Hint: Let the natural number be $$x$$ $$\therefore \qquad x + 12 = \frac{160}{x}$$ $$\Rightarrow \qquad x(x + 12) = 160$$ $$\Rightarrow \qquad x^2 + 12x - 160 = 0$$ - 2. By increasing the list price of a book by ₹ 10, a person can buy 10 books less for ₹ 1200. Find the original list price of the book. (CBSE 2007) - **3.** The hypotenuse of a right-angled triangle is 1 cm more than twice the shortest side. If the third side is 2 cm less than the hypotenuse, find the sides of the triangle. (CBSE 2007) - **4.** A passenger train takes 2 hours less for a journey of 300 km, if its speed is increased by 5 km/hr from its usual speed. Find its usual speed. (CBSE 2006, 2007) - 5. The numerator of a fraction is one less than its denominator. If three is added to each of the numerator and denominator, the fraction is increased by $\frac{3}{28}$. Find the fraction. (AI CBSE 2007) - **6.** The difference of squares of two natural numbers is 45. The square of the smaller number is four times the larger number. Find the numbers. (AI CBSE 2007) - 7. Solve: $x^2 + 5\sqrt{5}x 70$ [NCERT Exemplar] - **8.** A train travels a distance of 300 km at a uniform speed. If the speed of the train is increased by 5 km an hour, the journey would have taken two hours less. Find the original speed of the train. (CBSE 2006) - 9. The speed of a boat in still water is 11 km/hr. It can go 12 km upstream and returns downstream to the original point in 2 hours 45 minutes. Find the speed of the stream. (AI CBSE 2006) - **10.** Determine the value of k for which the quadratic equation $4x^2 3kx + 1 = 0$ has equal roots. (CBSE 2006 C) - **11.** Using quadratic formula, solve the following equation for 'x': $ab x^2 + (b^2 ac) x bc = 0$ (AI CBSE 2006 C) - 12. The sum of the numerator and the denominator of a fraction is 12. If the denominator is increased by 3, the fraction becomes $\frac{1}{2}$. Find the fraction. (AI CBSE 2006 C) - **13.** Rewrite the following as a quadratic equation in x and then solve for x: $$\frac{4}{x} - 3 = \frac{5}{2x + 3}; \quad x \neq 0, -\frac{3}{2}$$ (AI CBSE 2006 C) - **14.** A two digit number is such that the product of its digits is 18. When 63 is subtracted from the number, the digits interchange their places. Find the number. (AI CBSE 2006 C) - **15.** A train covers a distance of 90 km at a uniform speed. Had the speed been 15 km/hr more, it would have taken 30 minutes less for the journey. Find the original speed of the train. (AI CBSE 2006 C) - **16.** Solve for *x*: $$\frac{x+1}{x-1} + \frac{x-2}{x+2} = 3; \quad (x \neq 1, -2)$$ (CBSE 2012) 17. Using quadratic formula, solve the following for x: $$9x^2 - 3(a^2 + b^2)x + a^2b^2 = 0$$ (CBSE 2012) 18. Find the equation whose roots are reciprocal of the roots of $$3x^2 - 5x + 7 = 0$$ - **19.** A number consists of two digits whose product is 18. When 27 is subtracted from the number, the digits change their places. Find the number. (AI CBSE 2005 C) - **20.** A number consisting of two digits is seven times the sum of its digits. When 27 is subtracted from the number, the digits are reversed. Find the number. (AI CBSE 2005 C) - 21. The sum of the squares of two consecutive odd numbers is 394. Find the nimbers. [CBSE (Foreign) 2014] ### Hint: Let the two consecutive odd numbers be x and x + 2. \therefore For x = 13, x + 2 = 13 + 2 = 15 Thus, the required numbers are 13 and 15. - **22.** An aeroplane left 30 minutes later than its scheduled time and in order to reach its destination 1500 km away in time, it has to increase its speed by 250 km/hr from its usual speed. Determine its usual speed. (AI CBSE 2005 C) - 23. Using quadratic formula, solve for x: $9x^2 - 3$ (a + b) x + ab = 0 (CBSE 2012) - 24. Find the number which exceeds its positive square root by 20. - **25.** The sum of two numbers is 15 and the sum of their reciprocals is $\frac{1}{3}$. Find the numbers. (CBSE 2005) - **26.** A two digit number is such that the product of its digits is 14. If 45 is added to the number, the digits interchange their places. Find the number. (AI CBSE 2005) - **27.** A two digit number is such that the product of its digits is 20. If 9 is added to the number, the digits interchange their places. Find the number. (AI CBSE 2005) - **28.** A two digit number is such that the product of its digits is 15. If 8 is added to the number, the digits interchange their places. Find the number. (AI CBSE 2005) - **29.** Solve for *x*: $$\frac{x-1}{x-2} + \frac{x-3}{x-4} = 3\frac{1}{3}; \quad (x \neq 2, 4)$$ (AI CBSE 2005) **30.** Solve for *x*: $$ab x^2 + (b^2 - ac) x - bc = 0$$ (AI CBSE 2005) - 31. The sum of two numbers is 18. The sum of their reciprocals is $\frac{1}{4}$. Find the numbers. (AI CBSE 2005) - 32. The sum of two numbers is 16, and the sum of their reciprocals is $\frac{1}{3}$. Find the numbers. (AI CBSE 2005) - 33. The sum of two numbers 'a' and 'b' is 15, and sum of their reciprocals $\frac{1}{a}$ and $\frac{1}{b}$ is $\frac{3}{10}$. Find the numbers 'a' and 'b'. (CBSE 2005) - **34.** Solve for *x*: $$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}; \quad a \neq 0, \quad b \neq 0, \quad x \neq 0$$ (CBSE 2012) **35.** Find the roots of the following quadratic equation: $$\frac{2}{5}x^2 - x - \frac{3}{5} = 0$$ (CBSE Sample Paper 2011) Hint: $$\frac{2}{5}x^2 - x - \frac{3}{5} = 0 \qquad \Rightarrow \qquad 2x^2 - 5x - 3 = 0$$ $$\Rightarrow \qquad (2x+1)(x-3) = 0$$ $$\Rightarrow \qquad x = -\frac{1}{2} \text{ and } x = 3$$ **36.** Find the roots of the equation: $$\frac{1}{2x-3} + \frac{1}{x-5} = 1; \quad x \neq \frac{3}{2}, 5$$ (CBSE Sample Paper 2011) - **37.** A natural number when subtracted from 28, becomes equal to 160 times its reciprocal. Find the number. (CBSE Sample Paper 2011) - 38. Find two consecutive odd positive integers, sum of whose squares is 290. (CBSE Sample Paper 2011) **39.** Find the values of k for which the quadratic equation (CBSE Delhi 2014) $(k + 4) x^2 + (k + 1) x + 1 = 0$ has equal roots. Also find these roots. ### Hint: From $$(k + 4)x^2 + (k + 1)x + 1 = 0$$, we get $$a = (k + 4), \quad b = (k + 1) \text{ and } c = 1$$ $$b^2 - 4ac = (k + 1)^2 - 4 (k + 4) (1)$$ $$= k^2 - 2k - 15$$ For equal roots, $b^2 - 4ac = 0$ $$k^2 - 2k - 15 = 0$$ $$k = 5 \text{ or } k = -3$$ For $k = 5$, we have $(k + 4)x^2 + (k + 1)x + 1 = 0$ $$yx^2 + 6x + 1 = 0$$ Solving for x , we get $x = \frac{-1}{3}, \frac{-1}{3}$ For $k = -3$, we have $x^2 - 2x + 1 = 0$ **40.** Solve for *x* : \therefore solving it, we get x = 1, x = 1 $$\frac{16}{x} - 1 = \frac{15}{x+1} \quad ; \quad x \neq 0, -1.$$ (AI CBSE 2014) Hint: $$\frac{16}{x} - 1 = \frac{15}{x+1} \Rightarrow \frac{16}{x} - \frac{15}{x+1} = 1$$ or $16(x+1) - 15(x) = x(x+1) \Rightarrow x^2 = 16$ $\therefore \qquad x = \pm 4$ **41.** Solve for *x* : $$\frac{x-2}{x-3} + \frac{x-4}{x-5} = \frac{10}{3}$$; $x \neq 3, 5$ (AI CBSE 2014) Hint: L.H.S. = $$\frac{x-2}{x-3} + \frac{x-4}{x-5}$$ \Rightarrow $\frac{(x-5)(x-2)+(x-4)(x-3)}{(x-3)(x-5)}$ (By cross multiplication) $$\Rightarrow \frac{2x^2 - 14x + 22}{x^2 - 8x + 15}$$ $$\frac{2x^2 - 14x + 22}{x^2 - 8x + 15} = \frac{10}{3} \text{ or } 3[2x^2 - 14x + 22] = 10[x^2 - 8x + 15]$$ On simplification, we get $2x^2 - 19x + 42 = 0 \Rightarrow x = \frac{7}{2}$ ## **ANSWERS** # **Test Your Skills** - **1.** 8 - **2.** ₹ 30 - **3.** 8 cm, 15 cm, 17 cm **4.** 25 km/hr - 6. 9 and 6 7. $7\sqrt{5}$; $2\sqrt{5}$ - 8. 25 km/hr - 9. 5 km/hr 10. $k \le \frac{4}{3}$ or $k = \frac{4}{3}$ 11. $x = \frac{c}{b}$, $x = \frac{b}{a}$ 12. $\frac{5}{7}$ 13. -2, 1 14. 92 15. 45 km/hr 16. x = -5, 2 17. $\frac{a^2}{3}$, $\frac{b^2}{3}$ 18. $7x^2 5x + 3 = 0$ 19. 63 20. 63 - **21.** 14 **22.** 750 km/h **23.** $x = \frac{a}{3}, \frac{b}{3}$ **24.** x = 16 **25.** 5, 10 **26.** 27 **27.** 45 **28.** 35 - **29.** $\frac{5}{2}$, 5 - **30.** x = -b - **31.** 6, 12 - **32.** 12, 14 - **33.** a = 5 or 10, b = 10 or 5 - 34. x = -a - 35. $x = \frac{1}{2}, 3$ - 36. 4 $\frac{3\sqrt{2}}{2}$ 37. 8 **38.** 11 and 13